Патенты автора Авраменко Валентин Александрович (RU)

Изобретение относится к атомной экологии и может быть использовано при переработке ЖРО, образующихся при эксплуатации различных атомно-энергетических установок на атомных электростанциях и транспортных средствах. Установка для переработки ЖРО содержит соединенные трубопроводами с запорными и регулирующими клапанами в соответствии с последовательностью осуществления технологического процесса источник ЖРО, сообщенный с приемной цистерной, узел предочистки ЖРО, содержащий цистерну узла предочистки, выполненную в виде цилиндрической герметичной емкости, снабженную мешалкой, выполненную с возможностью подвода сорбента, сульфатов, флокулянта, кислоты, ЖРО и возможностью отвода надосадочной жидкости, и узел сорбционной доочистки фильтрата, состоящий из цепочки фильтров, включающей фильтр с сорбентом ZF-F, фильтр с активированным углем и фильтры с селективным СРМ, и сообщенный с накопителем очищенной жидкости. При этом выход приемной цистерны через фильтр, заполненный активированным углем и сорбентом ZF-F, сообщен с запиточной цистерной, выходы которой сообщены с цистерной узла предочистки ЖРО, выходы которой сообщены с цистерной надосадочной жидкости, причем один из выходов содержит фильтр, используемый как намывной, для отделения сорбента СРМ и связан с дополнительным входом цистерны узла предочистки ЖРО. Кроме того, выход узла сорбционной доочистки фильтрата сообщен с первой и второй накопительными цистернами, выходы которых сообщены с рассольной цистерной, выполненной с возможностью сообщения с установкой обратного осмоса. Изобретение обеспечивает повышение эффективности переработки реальных жидких радиоактивных отходов. 16 з.п. ф-лы, 1 ил.

Изобретение относится к технологии производства спеченных керамических топливных таблеток для ядерных реакторов, содержащих делящиеся материалы, в частности порошок диоксида урана. Cпособ предусматривает искровое плазменное спекание подпрессованного порошка диоксида урана UO2 в молибденовой пресс-форме в вакууме под воздействием униполярного пульсирующего тока при постоянном контролируемом давлении прессования. Процесс проводят при ступенчатом разогреве до температуры 850-1100°C со средней скоростью ее подъема 60-65°C/мин и выдержкой при максимально достигнутой температуре в течение 270-330 с. Изобретение позволяет улучшить качество получаемой керамики, повысить плотность упаковки образующих ее кристаллитов и кажущуюся плотность за счет исключения диффузии углерода в объем спекаемого материала. 2 з.п. ф-лы, 5 ил., 3 табл.

Изобретение может быть использовано в химической технологии для выделения урана (VI) из водных сред, а также в процессах очистки радиоактивно загрязненных природных, сточных и морских вод. Способ включает использование в качестве сорбента макропористых материалов на основе железооксидных систем композитного состава, содержащих наноразмерную фазу железа и имеющих макропористую структуру. В качестве сорбента используют материал, получаемый из ксерогеля гидроксида железа, синтезируемого золь-гель (темплатным) синтезом, в присутствии раствора силоксан-акрилатной эмульсии с содержанием твердой фазы по полимеру 50 масс.% и средним размером частиц 160 нм в качестве коллоидного темплата. После промывки и сушки материал прокаливают на воздухе в течение 1 часа при температурах от 600 до 900°С, а затем полученный оксид железа прокаливают в токе монооксида углерода в течение 1 часа при температуре 900°С при скорости нагрева 10°С/мин. Полученный сорбент вводят в очищаемую водную среду в концентрациях 1:100 по массе при содержании уранил-ионов в растворе не менее 10 г/л, при рН от 2,5 до 7-8, при комнатной температуре, выдерживают в течение от 3-8 до 48 часов, после чего фильтруют и извлекают осадок. Способ обеспечивает повышение эффективности очистки водных растворов от урана, а также за счет наличия магнитного эффекта у сорбционного материала увеличивается эффективность отделения осадка от очищаемого раствора методом магнитной сепарации. 2 з.п. ф-лы,7 ил.

Изобретение относится к способам иммобилизации радионуклидов в керамике и предназначено для прочной иммобилизации и длительной консервации радиоактивных отходов, в том числе отходов атомной энергетики, отработанных сорбентов, содержащих радионуклиды, а также может найти применение в радиохимической промышленности при изготовлении источников ионизирующего излучения для использования в гамма-дефектоскопии, измерительной технике, медицине, в том числе источников ионизирующего излучения со строго дозированной удельной активностью для применения в онкологии. Согласно предлагаемому способу размолотый в порошок природный цеолит с содержанием Na2O 1,55-2,15 мас. %, насыщенный ионами цезия, помещают в графитовую либо стальную пресс-форму, подпрессовывают и подвергают искровому плазменному спеканию в вакуумной камере при постоянной механической нагрузке под воздействием обладающих высокой энергией низковольтных импульсов униполярного электрического тока с длительностью 3,3 мс, которые генерируют пакетами с паузами между ними. Температуру спекаемого порошка повышают до 800-1100°С в две стадии: в диапазоне до 650°С скорость разогрева составляет 300°С/мин, выше 650°С - 90°С/мин. Пресс-форму с порошком цеолита выдерживают при достигнутой температуре в течение 4,5-5,5 мин, затем, сохраняя вакуум, охлаждают до температуры окружающей среды. При изготовлении источников ионизирующего излучения исходный цеолит перед размолом промывают, после размола отбирают фракцию 0,05-0,1 мм, которую перед спеканием снова промывают и высушивают. Технический результат - увеличение количества иммобилизуемых радионуклидов цезия в керамические матрицы, что обеспечивает повышение удельной активности и, соответственно, безопасности при захоронении РАО при одновременном расширении области применения получаемых продуктов. 3 з.п. ф-лы, 3 ил., 3 пр.

Изобретение относится к радиоаналитической химии, конкретно к технологии сорбционного извлечения из водных сред радионуклидов цезия, их концентрирования и определения содержания в исходном растворе. Способ предусматривает динамическую обработку раствора путем фильтрации через слой смешанного ферроцианида цинка-калия на хитозане, отделение цезия-137 от сорбента путем смывания с помощью 5М раствора нитрата аммония NH4NO3 с последующим извлечением цезия-137 из полученного элюата сорбентом ХФС никель-калий в статическом режиме при соотношении объема раствора и массы сорбента 100-1000:1, при этом элюат предварительно нагревают до 70-80°C и вносят в него сухой NaOH до прекращения газообразования с выделением NH3. Изобретение позволяет повысить эффективность и рентабельность способа за счет возможности многократного прохождения сорбентом, используемым при извлечении цезия-137 из исходного раствора, цикла сорбция-регенерация без снижения сорбционных характеристик, повышения эффективности сорбции цезия-137 из элюата на сорбенте ХФС никель-калий при одновременном улучшении экологической безопасности вследствие значительного уменьшения количества никельсодержащих отходов. 4 з.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к комплексу оборудования, предназначенного для получения сорбционных материалов для обработки и очистки жидких сред, зараженных токсичными и радиоактивными веществами, преимущественно для извлечения долгоживущих радионуклидов цезия и стронция из высокосолевых растворов, в частности из жидких радиоактивных отходов. Установка содержит соединенные, в соответствии с последовательностью осуществления технологического процесса, трубопроводами с запорными и регулирующими клапанами реакторы-смесители для приготовления растворов исходных реагентов, насосы для перекачки воды и растворов исходных реагентов в реактор синтеза сорбционного материала, связанные с расходными емкостями реагентов и со снабженным очистителем источником воды, пульповый насос для подачи синтезированного материала в сгуститель, емкость для суспензии с некондиционной фракцией сорбционного материала, сушильный шкаф для высушивания и последующей прокалки сорбционного материала, средства для его размола и рассева. Реактор синтеза выполнен в виде автоклава, выход которого через промежуточную емкость сообщен со сгустителем, выполненным в виде друк-фильтра, из которого сгущенный продукт перемещают в сушильный шкаф, а фильтрат - в емкости сбора жидких отходов. Выход коллектора жидких отходов сообщен с дополнительным входом в реактор синтеза, дополнительный выход которого сообщен с емкостями сбора жидких отходов. Реактор-смеситель для приготовления раствора токсичного исходного реагента, в частности хлорида бария, выполнен с установленным сверху растаривателем в виде герметичного бункера с самоуплотняющейся крышкой, снабженного средством безопасного вскрытия мешков с сухим реагентом и средством орошения внутреннего пространства бункера. Технический результат - увеличение эффективности установки при одновременном повышении ее производственной и экологической безопасности. 3 ил.
Изобретение относится к получению сорбентов. Предложен способ получения пористого магнитного сорбента нефтепродуктов. Согласно изобретению проводят синтез моносиликата кальция структуры ксонотлита путем взаимодействия в растворе хлорида кальция и силиката натрия в присутствии силан-силоксановой микроэмульсии с получением гидрофобизированного гидрогеля. В объем гидрогеля вводят предварительно полученную магнитную фазу окислов железа, представленную вюститом и маггемитом. Упомянутая магнитная фаза осаждена избытком гидроксида аммония из смеси растворов солей трехвалентного и двухвалентного железа при соотношении Fe3+/Fe2+, равном 2:1. Полученную смесь выдерживают до образования стабильного гидратированного осадка в виде геля, промывают и сушат. Изобретение обеспечивает улучшение эксплуатационных свойств сорбента. 2 з.п. ф-лы.
Изобретение относится к сорбентам и может быть использовано для очистки от углеводородных загрязнений поверхности воды и почвы. Сорбент содержит пористый синтетический моносиликат кальция со структурой ксонотлита, гидрофобизированный добавкой силан-силоксановой микроэмульсии, и синтезированную в объеме моносиликата кальция наноразмерную магнитную фазу окислов железа, состоящую на 1/3 из вюстита и на 2/3 из маггемита. Технический результат заключается в получении магнитомягкого эффективного сорбционного материала, обладающего высокой плавучестью. 1 пр.

Группа изобретений относится к сорбентам для очистки технологических вод и радиоактивных отходов. Сорбционный материал для извлечения радионуклидов стронция, представляющий собой композит силиката бария игольчатой структуры и пористого кристаллического сульфата бария. Имеется также способ получения сорбционного материала для извлечения радионуклидов стронция, а также применение сорбционного материала для селективного извлечения радионуклидов стронция из растворов с высоким содержанием солей жесткости и способ извлечения радионуклидов стронция из растворов с высоким содержанием солей жесткости. Группа изобретений позволяет повысить селективность извлечения стронция из растворов с высоким содержанием солей жесткости. 4 н. и 4 з.п. ф-лы, 5 ил., 7 пр.

Изобретение относится к получению прекурсора на основе гидратированного диоксида титана для каталитически активного покрытия на инертном носителе, содержащего наноразмерные металлические частицы палладия. К коллоидному раствору силоксан-акрилатной эмульсии при перемешивании добавляют раствор тетрахлорпалладиевой кислоты H2PdCl4 и ведут перемешивание при постоянном нагревании при температуре 75-80°С. Полученный раствор охлаждают и проводят в нем восстановление палладия из ионной формы до металла в виде наночастиц путем добавления восстанавливающего раствора хлорида титана(III) в хлористоводородной кислоте с последующим перемешиванием полученного коллоидного раствора в течение времени, достаточного для завершения полного гидролиза и поликонденсации с образованием гидратированного диоксида титана TiO2·nH2O. Обеспечивается получение термически устойчивого оксидного покрытия, содержащего наночастицы палладия, с использованием упомянутого прекурсора. 4 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к технологии обработки ионообменной смолы. В заявленном изобретении отработанный катионит или смесь катионита и анионита дезактивируют раствором, содержащим ионы натрия в количестве 1-3М и щелочь, при одновременной очистке этого раствора от радионуклидов цезия с применением селективного, устойчивого в щелочных средах катионита на основе резорцинформальдегидной смолы. Техническим результатом является увеличение десорбции радионуклидов цезия с катионита, растворение глинистых отложений с высвобождением радионуклидов и существенным снижением объема радиоактивных отходов. 11 з.п. ф-лы, 3 ил., 10 пр.

Изобретение относится к промышленности строительных материалов, в частности к производству гидравлических цементов и технологии их измельчения. Интенсификатор помола цемента содержит в своем составе кремнийорганические соединения нефункционального типа в виде полифенилсилоксана ПФС и диметилсилоксанового каучука СКТН при следующем соотношении компонентов, мас.%: полифенилсилоксан ПФС 40-60, диметилсилоксановый каучук СКТН 60-40. В способе применения указанного интенсификатора осуществляют его смешивание в процессе помола с цементным клинкером в количестве 0,1-0,5% от его массы. Для активизации реакционной способности нефункциональных кремнийорганических соединений, входящих в состав интенсификатора, используют метод механоактивации, в результате чего на их поверхности образуются ионы O2Si2- и O3Si3-, являющиеся активными центрами присоединения частиц цементного клинкера в твердофазной химической реакции. Технический результат - повышение уровня воздействия кремнийорганических соединений КОС нефункционального типа в составе интенсификатора помола на процесс размельчения цементного клинкера, повышение размолоспособности клинкера, уменьшение агрегации частиц цементного клинкера и их налипание на мелющие поверхности, управление процессом структурообразования цемента и регулирование его физико-техническими свойствами, применение в составе интенсификатора помола кремнийорганических соединений, являющихся побочными продуктами химического производства, безвредными для здоровья людей и окружающей среды, повышение прочности изделий и строительных конструкций, изготовленных на основе модифицированного цементного композита. 2 н. и 17 з.п. ф-лы, 2 табл.

Изобретение относится к неорганической химии, а именно к получению карбидокремниевых материалов и изделий, и может быть применено в качестве теплозащитных, химически и эрозионностойких материалов, используемых при создании авиационной и ракетной техники, носителей с развитой поверхностью катализаторов гетерогенного катализа, материалов химической сенсорики, фильтров для фильтрации потоков раскаленных газов и расплавов, а также в технологиях атомной энергетики. Для получения наноструктурированной SiC керамики готовят раствор в органическом растворителе фенолформальдегидной смолы с массовым содержанием углерода от 5 до 40% с тетраэтоксисиланом с концентрацией от 1·10-3 до 2 моль/л и кислотным катализатором гидролиза тетраэтоксисилана; проводят гидролиз тетраэтоксисилана при температуре 0÷95°C гидролизующими растворами, содержащими воду и/или органический растворитель, с образованием геля. Полученный гель сушат при температуре 0÷250°C и давлении 1·10-4÷1 атм до прекращения изменения массы, после чего осуществляют карбонизацию при температуре от 400 до 1000°C в течение 0,5÷12 часов в инертной атмосфере или при пониженном давлении с образованием высокодисперсной стартовой смеси SiO2-C, из которой формуют керамику искровым плазменным спеканием при температуре от 1300 до 2200°C и давлении 3,5÷6 кН в течение от 3 до 120 мин в условиях динамического вакуума или в инертной среде. Избыточный углерод выжигают на воздухе при температурах 350÷800°C. Технический результат изобретения - получение наноструктурированной карбидокремниевой пористой керамики без посторонних фаз. 3 з.п. ф-лы, 4 ил., 3 пр.
Изобретение относится к медицине, а именно к лучевой терапии опухолей. Способ включает введение в опухоль средства, содержащего наноразмерные частицы золота и йодсодержащее контрастное вещество. Данное средство вводят непосредственно в опухоль, после чего проводят обработку опухоли фотонным ионизирующим гамма-излучением 60Со. Способ позволяет увеличить дозу фотонной терапии непосредственно в ткани опухоли на 10% при одновременном снижении лучевой нагрузки на нормальные ткани. Изобретение расширяет арсенал способов терапии опухолей внутренней локализации, например опухолей легких, желудочно-кишечного тракта, женской и мужской половой системы, лимфомы. 2 табл.

Изобретение относится к защите окружающей среды, конкретно к сорбентам для дезактивации почв, грунтов, песка и других твердых сыпучих отходов, загрязненных радионуклидами стронция
Изобретение относится к получению композитных неорганических сорбентов, которые могут быть эффективно использованы для очистки растворов от радионуклидов цезия

Изобретение относится к способу извлечения золота из кислых растворов путем использования более высокоемкого и высокоселективного сорбента на основе тиокарбамоилхитозана (ТКХ) со степенью присоединения 0,4-0,9, предварительно обработанного 0,01-0,1 М раствором соляной кислоты в течение 1-2 ч с последующим отфильтровыванием

Изобретение относится к области защиты окружающей среды, конкретно к дезактивации почв, грунтов, песка, ионообменных смол, шлаков и других твердых сыпучих отходов, загрязненных радионуклидами, и может применяться на АЭС, радиохимических производствах, в зонах техногенных катастроф и аварийных разливов ЖРО

Изобретение относится к способу извлечения золота из твердого золотосодержащего органического сырья

Изобретение относится к технологии очистки жидких радиоактивных отходов (ЖРО) от радионуклидов цезия и может быть использовано для очистки кислых и нейтральных средне- и высокоактивных ЖРО

Изобретение относится к получению неорганических сорбентов на носителе

Изобретение относится к охране окружающей среды, а именно к способам переработки жидких радиоактивных отходов (ЖРО), предусматривающим их иммобилизацию в кристаллический материал, приемлемый с экологической точки зрения, и может быть использовано на предприятиях атомной энергетики и химико-металлургических производств

Изобретение относится к области ядерной энергетики, в частности к переработке кубовых остатков жидких радиоактивных отходов ядерных установок, например отходов атомных электростанций

Изобретение относится к биотехнологии, в частности к способам адсорбционной хроматографии бычьего сывороточного альбумина (БСА) с использованием модифицированных адсорбентов, и может быть использовано для выделения БСА из растворов

Изобретение относится к коллоидной химии, конкретно к разрушению водно-органических эмульсий, и может быть использовано в пищевой промышленности и биотехнологии, а также для очистки воды от масел, жиров, топлив, нефтепродуктов и других органических примесей

Изобретение относится к способам очистки пресной и морской воды, загрязненной, в том числе эмульгированными, нефтепродуктами, минеральными и пищевыми маслами, и может быть использовано для тонкой очистки сточных вод различных предприятий, а также пластовых и промысловых вод

 


Наверх