Патенты автора Светличный Валентин Михайлович (RU)

Настоящее изобретение относится к сополи(пропиленгликольуретан-парафениленпирромелитимиду) ПМ-2300-ПФ, используемому для получения композиционных материалов для изготовления изделий конструкционного, электротехнического, общего и специального назначения, применяемых в авто-, авиа-, судостроении, космической технике, нефтехимической отрасли на железнодорожном транспорте и в медицине. Сополи(уретанимид) ПМ2300-ПФ представляет собой соединение на основе терминированного 2,4-толуилендиизоцианатом полипропиленгликоля с молекулярной массой 2300, парафенилендиамина и пиромеллитового ангидрида формулы: , где значение n таково, что полученная характеристическая вязкость сополи(уретанимида) составляет 0,93*100 см3/г. Значение степени полимеризации полипропиленгликоля k составляет 32. Композиты, полученные на основе сополи(уретанимида) ПМ-2300-ПФ, обладают эффектом памяти формы. 1 ил., 3 табл.

Настоящее изобретение относится к мультиблочному сополиуретанимиду, обладающему эффектом памяти формы. Сополиуретанимид представляет собой сополи(полипропиленгликольуретан-бифениленпиромеллитимид, полученный на основе терминированного 2,4-толуилендиизоцианатом (ТДИ) поли(пропилеленгликоля) с молекулярной массой 2300 бензидина и пиромеллитового ангидрида, имеющий структурную формулу: , где k равно 2300, а значение n таково, что полученная характеристическая вязкость сополиуретанимида составляет 0,9*100 см3/г. Полученный сополиуретанимид, а также композиты на его основе способны к проявлению эффекта памяти формы. 1 ил., 3 табл., 3 пр.

Настоящее изобретение относится к сополи(пропиленгликольуретан-метафениленпиромеллитимиду) ПМ-2300-МФ, используемому для получения композиционных материалов для изготовления изделий конструкционного, электротехнического, общего и специального назначения, применяемых в авто-, авиа-, судостроении, нефтехимической отрасли и в медицине. Сополи(уретанимид) ПМ2300-МФ представляет собой соединение на основе терминированного 2,4-толуилендиизоцианатом полипропиленгликоля с молекулярной массой 2300, метафенилендиамина и пиромеллитового ангидрида формулы где значение n таково, что полученная характеристическая вязкость сополи(уретанимида) составляет 1,03*100 см3/г. Значение степени полимеризации полипропиленгликоля k составляет 32. Композиты, полученные на основе сополи(уретанимида) ПМ-2300-МФ, обладают эффектом памяти формы. 5 ил., 4 табл.

Настоящее изобретение относится к способу получения термопластичного нетканого материала на основе микро- и нановолокон из ароматических полиимидов и может найти применение в получении материалов для фильтрации горячих жидких и газообразных агрессивных сред, разделительных мембран, для получения углеродных нановолокон, в качестве матриц для клеточных технологий. Указанный способ включает синтез полиамидокислоты поликонденсацией диангидрида 3,3′,4,4′-дифенилоксидтетракарбоновой кислоты или диангидрида 1,3-бис(3′,4-дикарбоксифенокси)бензола и 4,4′-бис(4′-аминофенокси)дифенилсульфона или 4,4′-бис(4′-аминофенокси)дифенила в апротонном растворителе, осаждение полиамидокислоты в воду, обработку водным раствором триэтиламина или аммиака с получением соли полиамидокислоты, приготовление водно-спиртового раствора соли полиамидокислоты с концентрацией 5-10 мас.% и подачу раствора через электрод-фильеру в электрическое поле с напряжением 10-20 кВ, затем осажденный на приемном электроде материал обрабатывают при температуре 200-250 °С в течение 30-60 мин. Полученный продукт представляет собой нетканый материал, состоящий из микро- и нановолокон ароматического термопластичного полиэфиримида диаметром 150 - 1000 нм с температурой разложения в инертной среде 510-530 °С и температурой стеклования 217-230°С. Указанный способ позволяет получать термопластичный нетканый материал на основе микро- и нановолокон из ароматического полиэфиримида методом электроформования менее энергозатратно и без экологической нагрузки. 4 ил., 4 пр.
Изобретение относится к композитам на основе частично кристаллического плавкого полиэфиримида с армирующими волокнами, перерабатываемого методом литья под давлением, экструзией и прессованием. Получаемые на его основе полимерные композиционные материалы могут быть использованы для изготовления высокопрочных, тепло- и термостойких деталей для изделий конструкционного, электротехнического, общего и специального назначения, применяемых в авто-, авиа-, судостроении, космической технике, нефтехимической отрасли, в медицине и на железнодорожном транспорте. Кристаллизуемый плавкий полиэфиримидный композит по изобретению содержит следующее соотношение компонентов в мас.%: 48,5-79,45 частично-кристаллического полиэфиримида, 20-50 армирующих волокон, выбранных из углеродных волокон, базальтовых волокон и стеклянных волокон, 0,5-1 бисфтальимида в качестве пластификатора, 0,05-0,5 углеродных наночастиц. Техническим результатом изобретения является создание кристаллизуемого плавкого полиэфиримидного композита, способного к рекристаллизации для получения изделий методом литья под давлением, экструзией, горячим прессованием, обладающих улучшенным по сравнению с аналогами комплексом термических, прочностных и других эксплуатационных характеристик. 2 табл., 8 пр.

Изобретение относится к области изготовления нанокомпозитных материалов на основе ароматического полиимида и смесей наночастиц различных типов, которые могут найти применение для изготовления композиционных материалов, а именно стеклопластиков, углепластиков, органопластиков. Описан способ получения нанокомпозитных материалов, характеризующийся тем, что в качестве наноразмерного наполнителя используют смеси различных наночастиц, как минимум двух типов: наночастиц слоевой геометрии, нановолокон, нанотрубок и наноконусов/дисков, вводимых в полимер одновременно или последовательно. Наночастицы вводят в полимер одновременно или последовательно при перемешивании механической мешалкой в течение 24 часов при скорости 1000 об/мин. При этом хотя бы один из нескольких типов используемых наночастиц может быть внесен в полимерную матрицу на стадии ее синтеза (in situ полимеризация). Из полученного нанокомпозитного раствора с помощью щелевой фильеры отливают пленки, сушат их в течение 2 ч при температурах 80°С или 70°С с последующей термообработкой в режиме нагрева до 360°С со скоростью 5 град/мин или до 250°С со скоростью 3 град/мин и выдержкой при этой температуре в течение 15 или 30 мин соответственно. Технический результат – обеспечение полимерного материала с высокой суммарной концентрацией наночастиц, при которой концентрация наночастиц каждого типа остается достаточно низкой для того, чтобы они оставались однородно распределенными в объеме полимера и не образовывали агрегатов, что обеспечивает повышенный уровень таких механических характеристик, как модуль упругости, прочности и предел пластичности. 1 з.п. ф-лы, 1 ил., 1 табл., 7 пр.

Изобретение относится к химии высокомолекулярных соединений, в частности к устройству для получения новых углеродосодержащих нанокомпозитных материалов на основе полимерных матриц и наноразмерных наполнителей. Устройство содержит реакционную камеру, смеситель компонентов, бункеры с исходными компонентами, емкость с дистиллированной водой, аппарат для лиофильной сушки материала, источник инертного газа, камеру для дополнительной обработки композита, емкость для диспергирования композита, контейнер приема нанокомпозита, сообщенный с щелевой фильерой для нанесения нанокомпозита на подложку, и сушильную камеру с вытяжным насосом для термообработки получаемого нанокомпозиционного материала. При этом бункеры соединены со смесителем, оснащенным излучателем ультразвуковых волн для обработки исходных компонентов, подаваемых с помощью насоса в реакционную камеру. Реакционная камера оснащена тепловой рубашкой и имеет дополнительное перфорированное днище, под которым полость соединена со сливным патрубком, имеющим дозатор, и сообщена с источником инертного газа. Сливной патрубок сообщен с емкостью, заполненной дистиллированной водой, полость которой соединена с аппаратом для лиофильной сушки материала, который, в свою очередь, сообщен с камерой для дополнительной обработки материала. Камера дополнительной обработки материала оснащена встроенным излучателем ультразвуковых волн, соединенным с источником инертного газа, а полость камеры соединена с емкостью диспергирования нанокомпозита и у дна имеет микроячеистую многослойную сетку. Емкость диспергирования композита оснащена импеллером для активного перемешивания композита. Изобретение обеспечивает эффективное контролируемое получение нанокомпозитного материала с высокими физико-механическими характеристиками. 3 з.п. ф-лы, 1 ил.

Изобретение относится к химии высокомолекулярных соединений и может найти применение в качестве материалов для фильтрации горячих жидких и газообразных технологических сред, разделительных мембран, а также для получения углеродных нановолокон. Описан способ получения материала на основе нановолокон из полиимида, включающий электроформование раствора полиамидокислоты в растворителе, в котором из раствора, содержащего не более 12 мас. % полиамидокислоты в апротонном растворителе, получают пленку методом формования через щелевую фильеру на подложку, которую снимают с подложки и в количестве, обеспечивающем содержание полиамидокислоты в растворе 12-20 мас. %, растворяют в смеси апротонный растворитель: бензоидный растворитель, при содержании бензоидного растворителя 20-70 об. %, раствор при комнатной температуре подают через электрод-фильеру в электрическое поле с напряжением 15-35 кВ, материал, осажденный на аноде, термообрабатывают при температуре 370-420°С в течение 60 мин, целевой продукт состоит из нановолокон ароматического полиимида диаметром 50-700 нм, имеющий температуру разложения в инертной среде выше 500°С в смеси. Технический результат: получение материала на основе нановолокон из ароматического полиимида методом электроформования полиамидокислоты при комнатной температуре. 6 ил., 5 пр.

Изобретение относится к новым композиционным полимерным материалам для светоизлучающих систем. Предложен фотолюминесцентный полимерный композиционный материал, включающий 1,6 мас.% полифенилхинолина (ПФХ) - поли[2,2′-(9-додецилкарбазол-3,6-диил)-6,6′-(окси)бис(4-фенилхинолина)] или поли[2,2′-(9-окта-децилкарбазол-3,6-диил)-6,6′-(окси)бис(4-фенилхинолина)] и 98,4 мас.% полимерной матрицы. Полимерную матрицу выбирают из группы, включающей полистирол, сополимер винилового спирта с винилацетатом, поли-N-винилкарбазол и полиметилметакрилат. Варьирование длины бокового радикала при карбазольном фрагменте ПФХ обеспечивает растворимость ПФХ в широком ряду растворителей, что важно для технологического использования, а также обеспечивает варьирование взаимодействия между донорными и акцепторными фрагментами в полимерном композите, что позволяет настраивать координаты цветности фотолюминесцентного материала. 4 ил., 1 табл., 8 пр.

Изобретение относится к частично кристаллическому плавкому полиимидному связующему для термостойких композиционных материалов, применяемых при производстве термостойких материалов для авиации, автомобиле- и судостроении, строительства, а также к композиции для получения этого связующего

 


Наверх