Патенты автора Клементьева Наталья Юрьевна (RU)

Изобретение относится к области судостроения и касается вопроса создания ледокольных судов, предназначенных для прокладки широкого канала, обеспечивающего безопасную проводку крупнотоннажных судов во льдах. Предложено ледокольное судно, включающее корпус, состоящий из основного головного корпуса и связанных с ним с помощью жесткой платформы побортно расположенных симметрично от диаметральной плоскости судна двух боковых корпусов, размещенных со смещением вниз по потоку от головного корпуса, и имеющий наклонный форштевень и разваленные борта, при этом головной корпус оборудован движительно-рулевым комплексом, а боковые корпуса - винтовыми движителями; крепление головного корпуса к соединяющей корпуса жесткой платформе осуществлено через шарнирную связь, обеспечивающую возможность поворота указанного корпуса в плоскости ватерлинии относительно диаметральной плоскости судна на угол не менее ±15°, а движительно-рулевой комплекс головного корпуса выполнен в виде поворотной винторулевой колонки, имеющей возможность поворота вокруг своей вертикальной оси на угол не менее ±90°. Технический результат заключается в улучшении управляемости многокорпусного ледокольного судна при формировании ледокольного канала, а также его ледопроходимости при движении задним ходом. 1 ил.

Изобретение относится к области судостроения и касается проведения экспериментальных исследований на моделях ледоколов и судов ледового плавания в ледовых опытовых бассейнах. Предложен способ проведения модельных испытаний судов в ледовом опытовом бассейне, включающий буксировку прикрепленной через динамометр к буксировочной тележке бассейна самоходной модели с работающими движителями в ледовых условиях, а затем на чистой воде в ледовом канале, оставшемся после прохождения буксируемой модели в ледяном поле, который предварительно очищают от битого льда. Буксировочная тележка бассейна обеспечивает движение модели с заданными скоростями, а частоту вращения движителей выбирают из условия равенства расчетной тяги и тяги движительного комплекса модели на заданной скорости движения. По результатам буксировочных самоходных испытаний модели в ледовых условиях и в условиях чистой воды в упомянутом ледовом канале определяют силу чистого ледового сопротивления модели RI, значение которой вычисляют в виде RI=FI+FW, где FI и FW - сила между моделью и буксировочной тележкой в ледовых условиях и в условиях чистой воды соответственно, причем при суммировании значения сил FI и FW берутся со своими знаками. Технический результат заключается в повышении достоверности и точности результатов модельных испытаний судов ледового плавания. 3 ил.

Изобретения относятся к области судостроения, в частности к экспериментальным методам испытания моделей в опытовых и ледовых бассейнах при проведении испытаний заякоренных объектов, и могут быть использованы для непосредственных измерений инерционных характеристик изучаемой модели. Устройство включает испытуемую модель плавучего объекта, имитатор дна водоема, якорные связи, соединяющие модель с имитатором дна и оснащенные тросовыми динамометрами для измерения в них сил натяжения, и измеритель линейных и угловых перемещений выбранной точки испытуемой модели. Модель выполнена состоящей из двух не равнозначных по массе частей, к одной из которых, имеющей массу, не превышающую 5% общей массы модели, прикреплены модельные якорные линии удержания и которая соединена с остальной частью модели через динамометр, предназначенный для измерения силы взаимодействия между этими частями. Способ включает монтаж модели к имитатору дна водоема с помощью якорной системы удержания, измерение линейных и угловых перемещений выбранной точки модели, натяжения в связях якорной системы удержания с помощью тросовых динамометров и определение жесткостной характеристики связей. Испытания проводят на модели, состоящей из двух не равнозначных по массе частей, соединенных через динамометр между ними, к меньшей части из которых крепят якорные линии удержания. После монтажа модели к имитатору дна водоема измеряют углы подхода якорных линий к корпусу испытуемой модели при отсутствии внешней нагрузки, и в процессе проведения эксперимента измеряют с помощью динамометра усилие, возникающее между упомянутыми частями испытуемой модели. В ходе дальнейшей обработки результатов эксперимента определяют суммарную силу, действующую на модель со стороны якорной системы удержания, после чего определяют расчетным путем инерционные характеристики модели как разность между соответствующими величинами, определенными по показаниям динамометра между частями испытуемой модели и величинами, рассчитанными как суммарная реакция якорных связей. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области судостроения. Буксируемое устройство имеет корпус, который состоит из симметрично расположенных относительно диаметральной плоскости устройства двух боковых ледокольных корпусов и центрального вспомогательного ледокольного корпуса, который расположен в диаметральной плоскости устройства впереди боковых ледокольных корпусов так, что плоскость его мидель-шпангоута находится вблизи линии, проходящей через форштевни двух боковых ледокольных корпусов, а его ширина по миделю равна не менее 0,2 аналогичной ширины боковых ледокольных корпусов. Центральный вспомогательный и боковые ледокольные корпусы имеют наклонный форштевень и жестко соединены между собой рамой. Боковые ледокольные корпусы выполнены относительно своей диаметральной плоскости несимметричными, их внешние борта являются прямостенными и имеют одинаковую ширину по миделю. Достигается снижение сопротивления движению ледокольного судна во льдах, обеспечивается прокладка широкого судоходного канала. 1 ил.

Изобретение относится к области судостроения и касается создания ледостойких гравитационных платформ, предназначенных для проведения бурильных работ и добычи углеводородов на шельфе замерзающих морей. Ледостойкая платформа 1 содержит нижнюю 4 и верхнюю 2 усеченные конические части с вершинами, направленными соответственно вверх и вниз, и расположенную между ними цилиндрическую часть 3. Платформа выполнена в виде гравитационной платформы, у которой суммарная высота верхней усеченной конической части и цилиндрической части составляет не более где - средняя глубина киля тороса в месте расположения платформы. Нижний усеченный конус с вершиной имеет высоту, равную разности между глубиной водоема в месте установки платформы и средней глубиной киля тороса. Угол α между образующей нижнего конуса платформы к вертикали составляет не менее, чем определяемый из соотношения α ≥ a r c t g ( g M n F п р е д ) , но не менее 45°, где n - коэффициент запаса, Fпред - предельная сдвигающая платформу нагрузка, g - ускорение свободного падения; M - масса платформы, состоящая из полезной массы и массы принятого балласта. Обеспечивается устойчивость положения платформы на грунте при действии глобальной ледовой нагрузки за счет ее минимизации и увеличения прижимающего платформу усилия при воздействии на нее крупных торосов. 3 ил.

Изобретение относится к экспериментальной гидродинамике морских инженерных сооружений и касается методов испытания их моделей в опытовом бассейне и используемого оборудования

 


Наверх