Патенты автора Гудошников Сергей Александрович (RU)

Изобретение относится к области технологии обработки аморфных ферромагнитных проводов (АФМ) и может быть использовано при определении температуры АФМ в процессе токового нагрева. Заявленное решение направлено на определение температурной зависимости сопротивления АФМ при токовом нагреве токами различной величины и формы. Для этого предварительно, методом дифференциальной сканирующей калориметрии, определяют температуру начала кристаллизации одного из образцов АФМ, отобранного из партии АФМ одного типа. Другой образец АФМ из той же партии доводят до полной кристаллизации путем первого нагрева током до температуры, превышающей температуру кристаллизации. По полученной зависимости сопротивления АФМ от мощности, выделяемой в АФМ от проходящего тока в процессе первого нагрева, находят величину сопротивления, соответствующую началу кристаллизации АФМ. По измеренным значениям сопротивления АФМ при комнатной температуре и температуре начала кристаллизации определяют температурный коэффициент сопротивления кристаллизованного АФМ, который используют для преобразования измеренных в процессе второго и последующих нагревов током относительных изменений величины сопротивления АФМ в значения температуры нагрева. Графические зависимости температуры АФМ от мощности, выделяемой в микропроводе или от тока через микропровод, преобразованные в аналитические зависимости в виде полиномов n-ой степени, используют для расчета значений мощности или тока, необходимых для создания требуемых тепловых режимов нагрева для данной партии АФМ. Технический результат – обеспечение возможности определять температуру образцов АФМ непосредственно в процессе их токового нагрева, более точное установление температурных режимов обработки образцов АФМ и оценивание температурных режимов нагрева и связанных с ними эффектов электрических и магнитных преобразований в АФМ. 6 з.п. ф-лы, 4 ил.

Изобретение относится к области измерительной техники и может найти применение для измерения слабых магнитных полей. Устройство для измерения слабых магнитных полей на основе эффекта гигантского магнитного импеданса содержит магниточувствительный элемент, выполненный из двух идентичных аморфных ферромагнитных микропроводов в стеклянной оболочке или с удаленной стеклянной оболочкой, размещенных внутри одной многовитковой катушки, причем высокочастотное возбуждение микропроводов осуществляется от многовитковой катушки, а регистрация сигналов с двух микропроводов осуществляется с помощью дифференциального усилителя. Технический результат – повышение точности измерений, уменьшение систематической ошибки выходного сигнала магнитометра в целом. 1 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике и представляет собой датчик механических деформаций на основе аморфных ферромагнитных микропроводов. Датчик измерения механических деформаций содержит прямоугольную пластину, выполненную с поперечными разрезами, обеспечивающими возможность ее растяжения в продольном направлении, в посадочном месте прямоугольной пластины размещен дополнительно введенный миниатюрный соленоид, подключенный к третьей паре контактных площадок, внутри которого размещен магниточувствительный элемент, при этом миниатюрный соленоид соединен через третью пару контактных площадок с источником постоянного тока, источник переменного тока соединен через первую пару контактных площадок с аморфным ферромагнитным микропроводом и выполнен в виде генератора переменного тока частоты f, усилитель сигналов дифференциальной измерительной катушки усиливает сигналы частоты 2f. Технический результат – повышение чувствительности датчика. 3 ил.

Изобретение относится к измерительной технике и представляет собой датчик механических деформаций на основе аморфных ферромагнитных микропроводов. Датчик конструктивно объединяет магниточувствительный элемент и электронное измерительное устройство. Магниточувствительный элемент представляет собой вытянутую планарную растяжимую полимерную пластину, на которой с двух концов закреплен аморфный ферромагнитный микропровод, проходящий через измерительную катушку в виде встречно соединенных соленоидов из медной проволоки, которая, в свою очередь, размещена внутри соленоида. Электронное измерительное устройство объединяет генератор синусоидального электрического тока I частотой f, соединенный с аморфным ферромагнитным микропроводом, источник постоянного тока, соединенный с соленоидом, усилитель, соединенный с измерительной катушкой. Для формирования цепи обратной связи в электронное измерительное устройство введены генератор частоты 2f, синхронный детектор, усилитель обратной связи и ключ замыкания обратной связи. С помощью соленоида создают начальное магнитное поле Н0, направленное вдоль оси аморфного ферромагнитного микропровода и намагничивающее его до насыщения. Через аморфный ферромагнитный микропровод пропускают синусоидальный электрический ток I частотой f. Усиливают и детектируют сигнал дифференциальной измерительной катушки на удвоенной частоте генератора 2f и определяют величину деформации за счет введения стабилизирующей цепи обратной связи и измерения сигнала обратной связи, пропорционального изменению дополнительного магнитного поля, которое прикладывается к аморфному ферромагнитному микропроводу для удержания фиксированного значения выходного напряжения дифференциальной измерительной катушки. Техническим результатом при реализации заявленного решения выступает расширение функциональных возможностей датчика, а именно линеаризация передаточной характеристики датчика за счет введения стабилизирующей цепи связи по воздействующему магнитному полю и соответствующее повышение точности в области малых деформаций. 3 ил.

Изобретение относится к аморфным ферромагнитным микропроводам (АФМ) в тонкой стеклянной оболочке и используется в устройствах измерительной техники. Сущность изобретения заключается в том, что в способе измерения характеристик аморфных ферромагнитных микропроводов (АФМ) исследуемый АФМ жестко закрепляют с одного конца, а к другому концу с помощью груза прикладывают начальное растягивающее напряжение σ0. С помощью соленоида создают некоторое начальное магнитное поле H0z, направленное вдоль оси АФМ, намагничивающее образец АФМ до насыщения. Через АФМ пропускаются синусоидальный электрический ток I частотой в пределах 5…10 кГц. Проводят измерение и построение зависимости сигнала ЭДС в измерительной катушке на удвоенной частоте в зависимости от изменяющегося приложенного внешнего магнитного поля Н. При этом измерения проводят для нескольких значений механических напряжений σ1…σn (где n≥2). По построенным зависимостям при фиксированном значении ЭДС определяют значение величины магнитных полей для пары различных механических напряжений, затем при фиксированном значении поля определяют пару значений ЭДС для той же пары механических напряжений, после чего проводят вычисление затравочного поля анизотропии Ha, закалочных напряжений Δσ, намагниченности насыщения Ms и константы магнитострикции λs. Технический результат – определение намагниченности насыщения и константы магнитострикции в одном цикле измерений, а также дополнительного определения внутренних закалочных напряжений АФМ. 3 ил.

Использование: для проведения коррозионных in-situ исследований материалов в различных проводящих средах. Сущность изобретения заключается в том, что исследуемый образец помещают в кювету с проводящим раствором, в котором требуется исследовать коррозионное поведение материала образца, после чего кювету располагают на платформе, находящейся внутри экрана, ослабляющего влияние внешних электромагнитных помех, далее датчик на основе эффекта гигантского магнитного импеданса закрепляют в держателе с прорезью для прохождения раствора и располагают непосредственно в растворе вблизи корродирующей поверхности горизонтально и параллельно оси Y, на фиксированном расстоянии Ζ относительно поверхности исследуемого образца, далее проводят сканирование корродирующей поверхности путем перемещения либо платформы, либо датчика вдоль координаты X на заданное расстояние, и одновременно производят запись значения Y компоненты магнитного поля коррозионных токов Нy(х) в зависимости от координаты X. Технический результат: обеспечение возможности измерения при помощи датчика на основе эффекта гигантского магнитного импеданса (ГМИ-датчика) величины и пространственного распределения локальных магнитных полей, возникающих вследствие протекания коррозионных процессов на металлической поверхности в проводящем растворе. 3 ил.
Изобретение относится к измерительной технике и представляет собой датчик механических напряжений. Датчик включает прямоугольную пластину из полимерного материала, на верхней поверхности которой сделано углубление, в котором помещается детектор, при этом внутри прямоугольной пластины вдоль продольной оси располагается предварительно напряжённый аморфный ферромагнитный микропровод, изготовленный из обогащённых кобальтом сплавов, помещённый внутрь измерительной катушки в виде встречно соединённый соленоидов из медной проволоки. Микропровод соединён с первой парой контактных площадок, а указанная дифференциальная измерительная катушка - со второй парой контактных площадок. Контактные площадки в свою очередь соединены с детектором, включающим источник переменного тока, соединённый с источником магнитного поля, источник постоянного тока, соединённый с первой парой контактных площадок, и усилитель сигнала измерительной катушки, вход которого соединён со второй парой контактных площадок, а выход соединён с аналого-цифровым преобразователем, подключенным к персональному компьютеру. 10 з.п. ф-лы, 5 ил.

Изобретение относится к медицине, а именно к травматологии и к биотехнологии, и может быть использовано для формирования биосовместимой полимерной структуры в костных тканях. Для этого обеспечивают пункционный доступ к заполняемой полости в костных тканях. Далее вводят в полость полимерную гелеобразную смесь, включающую 55-97.7 весовых % биосовместимого полимера полилактида с размерами частиц от 50 до 100 мкм, 0,3-45 весовых % магнитных наночастиц оксидов железа с размерами частиц от 10 до 100 нм, гелеобразующий агент мальтодекстрин в количестве от 0.5 до 50 весовых % от веса смеси полимера и магнитных наночастиц, а также дистиллированную воду в количестве от 0,5 до 100 весовых % от веса сухой смеси, полученной после смешения полимера, магнитных наночастиц и гелеобразующего агента. Затем формируют твердую трехмерную структуру. Для этого осуществляют одновременный нагрев смеси по всему объему путем воздействия на нее переменного магнитного поля с частотой до 500 кГц и амплитудой до 500 Э в течение 3-5 минут. При необходимости замедления процесса нагрева смеси, дополнительно осуществляют воздействие постоянным магнитным полем с амплитудой до 1000 Э, прикладывая его либо ко всему формируемому объему, либо локально в зависимости от решаемой задачи. Способ позволяет формировать биосовместимую твердую трехмерную структуру в заданной полости костной ткани при минимальном хирургическом вмешательстве. 1 ил.
Изобретение относится к области криминалистики и судебно-технической экспертизе документов

Изобретение относится к магнитоизмерительной технике, в частности к устройствам для определения магнитных свойств (индукции насыщения, остаточной намагниченности, петель гистерезиса, магнитного момента, магнитной восприимчивости) веществ и материалов и может найти применение в лабораторных и экспедиционных устройствах для решения исследовательских и промышленных задач

 


Наверх