Патенты автора Шевченко Владимир Григорьевич (RU)

Группа изобретений может быть использована при изготовлении высококалорийных компонентов энергетических конденсированных систем (ЭКС), например порохов, пиротехнических и взрывчатых составов, смесевых твердых ракетных топлив. Горючее как компонент энергетических конденсированных систем содержит частицы бора, плакированные оксидом металла. В качестве оксида металла оно содержит оксид ванадия (V) при следующем соотношении компонентов, мас. %: бор – 99-97, оксид ванадия (V) – 1-3. Для получения горючего осуществляют смешение аморфного бора с гелем на основе оксида ванадия (V) при соотношении компонентов, мас. %: бор - 85,0-62,7, гель оксида ванадия (V) - 37,3-14,5. Используют гель номинального состава V2O5⋅H2O c содержанием ванадия 5,5-6,0 мас. % V2O5, или гель, полученный путем растворения метаванадата аммония NH4VO3 в этиленгликоле HOCH2CH2OH с содержанием ванадия 9,8-10 мас. %, при расчете на V2O5, при нагревании на воздухе при соотношении компонентов, мас. %: NH4VO3 - 98,0-98,2; HOCH2CH2OH - 1,8-2,0. Производят сушку при температуре 80-200°С в течение 1-1,5 ч и последующее нагревание при температуре 300-350°С в течение 0,5-0,6 ч. Обеспечиваются высокая эффективность горения при использовании горючего в качестве компонента энергетических конденсированных систем (ЭКС) за счет увеличения полноты сгорания горючего и простота получения. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области нанесения защитных покрытий в металлургии и машиностроении. Способ получения наноразмерных пленок нитрида титана на подложке из кварцевого оптического стекла осуществляют следующим образом. Проводят термическое напыление путем резистивного испарения с использованием вольфрамового испарителя в виде проволоки с прикрепленной к ней навеской титана при остаточном давлении (1,3-2)·10-4 Па до полного её испарения. Толщину напыленного слоя определяют по математической формуле T=(M⋅sinθ)/(ρ⋅4⋅π⋅R2), где М - общая масса испаряемой навески титана, г, Т – толщина напыленной пленки титана, см, θ – угол наклона подложки к испарителю, град, ρ – плотность испаряемого титана, г/см3, R – расстояние от испарителя до подложки, см. Обработку в атмосфере чистого азота осуществляют при температуре 850-870°С и давлении 0,2–0,3 МПа в течение 40-90 мин. Обеспечивается получение пленок нитрида титана с толщиной в наноразмерном диапазоне для увеличения термостойкости и износостойкости изделий. 2 пр., 1 ил.

Изобретение относится к цветной металлургии и предназначено для получения металломатричных композитов, используемых при производстве изделий для автомобилестроения, железнодорожного транспорта, военной и аэрокосмической техники. Способ получения алюмоматричного композита включает смешивание и гомогенизацию порошка алюминия и оксида ванадия, V2O5, таблетирование и спекание в атмосфере инертного газа, при этом смешивание и гомогенизацию осуществляют пропиткой порошка алюминия с размером частиц не более 10 мкм гелем номинального состава V2O5:H2O с содержанием ванадия 3,08-3,36 мас.% при соотношении геля и порошка алюминия, равном (3,36-16,8 г):(9,8 - 9,0 г), последующей выдержкой на воздухе при температуре 80-85°С в течение 1 часа и нагреванием до температуры 350-400°С с выдержкой при этой температуре в течение 0,5 часа, а спекание осуществляют при температуре 800-820°С. Изобретение обеспечивает эффективную гомогенизацию исходных компонентов в обычных условиях без использования установок высокоэнергетического размола в инертной атмосфере, что существенно упрощает технологию. 3 ил., 1 табл., 3 пр.

Изобретение относится к порошковой металлургии, в частности к получению порошка на основе алюминия для 3D печати. В расплав алюминия в качестве двойной лигатуры вводят Al2V3 в количестве 0,43–1,41 мас.% от общей массы сплава. Распыление осуществляют в атмосфере чистого азота при давлении 10-12 атм с использованием форсунки щелевого типа с диаметром металлопровода не более 3 мм. Обеспечивается расширение номенклатуры порошковых сплавов, обладающих рабочими характеристиками, необходимыми для использования в аддитивных технологиях. 2 ил., 2 табл., 2 пр.
Изобретение относится к порошковой металлургии и предназначено для получения порошка активированного алюминия, используемого в качестве энергетической добавки в различных композициях. Способ активации порошка алюминия, включающий пропитку исходного порошка алюминия гелем, полученным путем плавления оксида ванадия (V) с последующим добавлением расплава в дистиллированную воду при перемешивании, фильтрацию и сушку, в котором после добавления расплава в дистиллированную воду осуществляют выдержку при температуре не более 100°С в течение 1,5-2,0 часов, пропитывают исходный порошок алюминия гелем при соотношении гель (г): порошок алюминия (г) = 0,34-4,2:1 и дополнительно осуществляют термообработку при температуре 300-310°С в течение 0,5–0,6 часа. Технический результат - обеспечение снижения температуры начала горения при нагревании на воздухе. 4 пр.

Использование: для определения ширины запрещенной зоны наноразмерных полупроводниковых и диэлектрических пленок. Сущность изобретения заключается в том, что способ определения оптической ширины запрещенной зоны наноразмерных пленок включает определение спектров эллипсометрического параметра ψ подложки с наноразмерной пленкой, нанесенной вакуумным напылением на подложку из неорганического материала, и подложки без пленки в зависимости от длины волны в видимом и ближнем УФ диапазоне, при этом определяют разность ψ ч –ψ, где ψ ч – эллипсометрический параметр подложки, ψ – эллипсометрический параметр подложки с нанесенной пленкой, в диапазоне исследуемого спектра волн излучения, строят график зависимости (( ψ ч -ψ)hυ)2 от hυ (эВ), где hυ – энергия фотонов, и путем экстраполяции прямой в высокоэнергетической части спектра находят точку пересечения с осью абсцисс. Технический результат: обеспечение возможности упрощения способа для определения ширины запрещенной зоны наноразмерных полупроводниковых и диэлектрических пленок. 8 ил.

Изобретение относится к ракетной технике, в частности к ракетам с бессопловом двигателем твердого топлива. Бессопловой ракетный двигатель твердого топлива содержит корпус, имеющий переднее днище, цилиндрическую часть и задний торец, заряд твердого топлива, торец которого выполнен в виде усеченного конуса, и воспламенитель. Корпус выполнен из материала, имеющего температуру воспламенения, равную температуре воспламенения материала заряда твердого топлива, контактирующего со стенками корпуса. Корпус и заряд твердого топлива выполнены как единое целое с использованием технологии 3D-печати. Слой воспламенителя толщиной не менее 100 мкм нанесен на торцевой контур заряда твердого топлива. Изобретение позволяет снизить пассивную массу конструкции и увеличить энергетическую эффективность ракетного двигателя. 2 з.п. ф-лы, 1 ил.

Изобретение относится к получению солей меди с использованием органических кислот, в частности к получению формиатов двухвалентной меди, которые могут быть использованы для синтеза купратов щелочноземельных металлов и высокотемпературных сверхпроводников, получения медных порошков для 3D-печати. Способ получения формиата меди(II) включает смешивание нитрата меди и муравьиной кислоты с последующей выдержкой и охлаждением, причем исходные реагенты берут в соотношении Cu(NO3)2⋅3H2O : (HCOOH) = 1 ÷ 2,5 – 1 ÷ 3,0 при концентрации муравьиной кислоты в диапазоне 20–99,7% и смешивание осуществляют при комнатной температуре с выдержкой при этой температуре 10-15 мин или с последующим добавлением воды в количестве 10-12 масс.% от общей массы и нагреванием до 80 °С с выдержкой при этой температуре 15-20 мин и охлаждением снова до комнатной температуры, или при температуре 50 °С с последующим упариванием в течение 90-95 мин и охлаждением до комнатной температуры, или с последующим охлаждением до температуры 5-8 °С с выдержкой при этой температуре в течение 120-130 мин. Авторами предлагается аппаратурно- и технологически простой способ получения формиата меди(II), обеспечивающий получение определенных модификаций конечного продукта, а именно: моноклинная α-модификация безводного формиата меди, орторомбическая β-модификация безводного формиата меди, моноклинная модификация двухводного формиата меди и моноклинная модификация четырехводного формиата меди. 7 ил., 4 пр.

Изобретение относится к области оптико-физических измерений, основанных на эллипсометрии, и предназначено для определения линейного коэффициента теплового расширения тонких прозрачных пленок. Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки, при котором производят измерения эллипсометрических параметров и при начальной и конечной температуре, с последующим определением толщины пленки при начальной и конечной температуре с учетом показателей преломления сред и расчётом коэффициента теплового расширения по известным формулам. При этом на аморфную кварцевую подложку путем вакуумного напыления наносят пленку, кроме того до нанесения пленки определяют оптические параметры и отраженного от поверхности подложки светового луча при начальной и конечной температуре, подложку с нанесенной пленкой помещают в водоохлаждаемую камеру, установленную внутри эллипсометра, конструкция которого обеспечивает определенный угол падения светового луча на поверхность системы пленка-подложка, и рассчитывают эллипсометрические параметры и , отраженного от поверхности системы пленка-подложка светового луча. Технический результат - определение линейного коэффициента теплового расширения тонкой прозрачной пленки толщиной менее 1 мкм. 1 ил.

Изобретение относится к области порошковой металлургии, в частности к способам модифицирования порошков алюминия. Порошок алюминия пропитывают модификатором, представляющим собой гель, полученный растворением формиата железа состава Fe(HCOO)2·2H2O в смеси дистиллированной воды и глицерина, взятых в соотношении 1:25, или основного формиата железа состава Fe(ОН)(HCOO)2 в монометиловом эфире этиленгликоля, при температуре 80оС. Соотношение порошок алюминия (г):гель (мл) составляет 1,5-2,5:1. Полученную массу сушат при температуре 100-150оС и прокаливают при температуре 300-350оС. Обеспечивается повышение степень полноты сгорания и снижение температуры начала горения при нагревании на воздухе. 3 пр., 4 ил.

Изобретение относится к получению солей железа из органических кислот, в частности к соли двухвалентного железа из муравьиной кислоты. Предлагается способ получения формиата железа (II), включающий нагревание соединения железа и муравьиной кислоты в присутствии металлической стружки, где нагревание карбонильного железа или нитрата железа и 20-25%-ной муравьиной кислоты осуществляют в две стадии: I стадия – при температуре 75-80°С до получения кристаллического осадка; II стадия – при температуре 50-55°С до получения сухого остатка, при этом в качестве металлической стружки используют железную стружку, предварительно помещенную в 20-25%-ную муравьиную кислоту, взятую в количестве 60-70 мас.% от массы стружки, и вводят железную стружку перед второй стадией нагревания, а затем излишне введенную стружку удаляют с помощью магнита. Таким образом, авторами предлагается аппаратурно- и технологически простой способ получения формиата железа (II). 2 ил., 2 пр.

Изобретение относится к способам оптико-физических измерений. Способ определения оптических констант пленок химически активных металлов или их сплавов включает измерения эллипсометрических параметров и пленки соответствующего металла или его сплава, предварительно нанесенной путем вакуумного напыления на подложку с последующим расчетом значений констант. Причем пленку толщиной 0,5-0,6 мкм наносят на внешнюю поверхность нижней грани треугольной 45-градусной призмы, выполненной из оптического стекла. При этом на наружную и боковую поверхность пленки наносят путем вакуумного напыления слой алюминия толщиной 0,5-1,0 мкм, а эллипсометрические параметры и определяют по формулам: , ,где ,— экспериментально измеренные значения эллипсометрических параметров, — минимальная эллиптичность отраженного света при угле Брюстера , выражаемая как ,где n0 =1 (воздух), n1 =1.51 (стекло), nсл, dсл– показатель преломления и толщина переходного слоя воздух - стекло соответственно. Технический результат заключается в возможности определения оптических постоянных тонких пленок химически активных металлов посредством метода эллипсометрии на воздухе. 2 ил.
Использование: для обнаружения и регистрации в электропроводящих изделиях усталостных поверхностных трещин с использованием метода акустической эмиссии (АЭ). Сущность изобретения заключается в том, что инициируют акустическую эмиссию в контролируемом изделии путем его нагружения, выполняют регистрацию и обработку сигналов акустической эмиссии, при этом осуществляют сканирование изделия линейным индуктором, через который пропускают импульсный электрический ток плотностью, обеспечивающей отсутствие нагревания индуктора и достаточной для инициирования сигнала акустической эмиссии, при этом линейный индуктор жестко связан с пьезопреобразователем датчика акустической эмиссии на расстоянии не более диаметра пьезопреобразователя. Технический результат: обеспечение возможности с высокой достоверностью контролировать появление развивающихся трещин. 1 пр.

Изобретение относится к измерительной технике, а именно к способам оптико-физических измерений, основанных на эллипсометрии, и предназначено для определения показателя преломления оптически прозрачных материалов. Предлагается способ определения показателя преломления оптически прозрачного материала путем измерения эллипсометрических параметров Δ и ψ с последующим их расчетом. При этом предварительно спрессованный нано- или ультрадисперсный порошок помещают в воздушную среду и определяют эллипсометрические параметры Δ и ψ на воздухе, а затем рассчитывают показатель преломления исследуемого спрессованного материала на воздухе (n1), после чего помещают исследуемый спрессованный материал в оптически прозрачную иммерсионную жидкость, обеспечивающую отсутствие химического взаимодействия и хорошую смачиваемость исследуемого материала, и определяют эллипсометрические параметры Δ и ψ в иммерсионной жидкости, а затем рассчитывают показатель преломления исследуемого спрессованного материала в иммерсионной жидкости (n2), после чего рассчитывают показатель преломления исходного нано- или ультрадисперсного порошка. Данное изобретение позволяет обеспечить возможность определения показателя преломления веществ, изначально находящихся в высокодисперсном порошковом состоянии. 1 ил.

Изобретение относится к средствам наземной эксплуатации солнечных батарей (СБ), в частности для проверки их работоспособности. Устройство содержит кожух, включающий корпуса (2) из термостойкой пластмассы со светодиодными излучателями (5). Со стороны, обращенной к СБ, закреплены откидные крышки (не показаны) из прозрачного оргстекла. Несущая балка (3) с корпусами (2) закреплена на регулируемых стойках (4). Фиксация корпусов (2) между собой и относительно балки (3) осуществляется посредством съемных штырей (7) и ответных отверстий (8) в смежных корпусах (2) и в балке (3). Для вертикальной фиксации корпусов (2) на несущей балке (3) предусмотрены складные планки из плоских звеньев (11) и (12) с шарнирами (13) и (14). Эти планки состыкованы между собой уголками (16) и закреплены на балке (3) кронштейнами (17) с резьбовыми стяжками (18). На корпусах (2) по периметру кожуха (1) установлены прокладки (19) для контакта с СБ. В корпусах (2) выполнены тепловентиляционные отверстия (не показаны). Технический результат состоит в унификации устройства применительно к СБ разных типоразмеров. 4 з.п. ф-лы, 8 ил.
Изобретение относится к области химии и может быть использовано для получения водорода. Сплав для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, содержит в качестве добавки лантан при следующем соотношении компонентов: лантан- 1,5÷3,0 мас.%, алюминий - остальное. Изобретение позволяет получить сплав, характеризующийся простым составом наряду с высокой полнотой газовыделения. 3 пр.
Настоящее изобретение относится к твердой смазке для абразивной обработки металлов и сплавов, содержащей хлорфторуглеродное масло, низкомолекулярный полиэтилен, минеральное масло, высокодисперсный порошок смеси продукта термического восстановления лейкоксена и карбида кремния или нитрида алюминия, при этом она дополнительно содержит линолевую кислоту при следующем соотношении компонентов, мас.%: хлорфторуглеродное масло 6-8 низкомолекулярный полиэтилен 1-2 минеральное масло 11-14 высокодисперсный порошок   смеси продукта термического восстановления 15-18 лейкоксена и карбида кремния   или нитрида алюминия   линолевая кислота 16,5-31 стеариновая кислота остальное, при этом она содержит смесь продукта термического восстановления лейкоксена и карбида кремния или нитрида алюминия, взятых в соотношении, равном 0,5-1:1, соответственно. Техническим результатом настоящего изобретения является разработка состава твердой смазки для абразивной обработки металлов и сплавов, позволяющего повысить качество обрабатываемой поверхности за счет снижения ее шероховатости. 1 табл., 2 пр.

Изобретение относится к области порошковой металлургии, в частности к способам активации горения дисперсных порошков алюминия, которые могут быть использованы в различных областях промышленности. Способ активации порошка алюминия включает пропитку исходного порошка активатором на основе оксидного соединения ванадия. В качестве активатора используют гель, содержащий 4,0-8,2 г/л ванадия и полученный путем плавления оксида ванадия (V), или оксида ванадия (V) и карбоната лития, или натрия, или оксида ванадия (V) и борной кислоты, или их смеси с последующим добавлением расплава к дистиллированной воде, при интенсивном перемешивании и выдержке. Гелем пропитывают исходный порошок алюминия при соотношении гель (мл):порошок алюминия (г)=1÷2:1, а затем полученную массу фильтруют на вакуумном фильтре и просушивают при температуре 50-60°C в течение 0,5-1 ч. Обеспечивается высокая степень полноты сгорания за счет достижения смешения компонентов на молекулярном уровне. 6 ил., 5 пр.

Изобретение относится к области оптико-физических измерений, основанных на эллипсометрии, и предназначено для определения толщины тонких прозрачных пленок

Изобретение относится к средствам наземной эксплуатации космических аппаратов с солнечными батареями

Изобретение относится к космической технике, а именно к космическим платформам

Изобретение относится к физико-химическим технологиям получения водорода, который может быть использован в энергетических установках для получения электроэнергии, в качестве ракетного топлива, в химической промышленности для получения органических соединений и т.д
Изобретение относится к получению сиалоновых материалов, применяемых в различных областях науки и техники

Изобретение относится к изделиям космической техники, а более конкретно к съемному технологическому оборудованию изделий космической техники, и может быть использовано при наземной подготовке космических аппаратов различного назначения
Изобретение относится к сплавам на основе кобальта, содержащем редкоземельный элемент, который может быть использован в качестве катализатора для очистки газообразных выбросов от токсичной примеси углерода

Изобретение относится к области испытаний материалов на трещиностойкость при действии структурных и температурных усадочных напряжений и старения
Изобретение относится к катализаторам глубокого окисления оксида углерода и может быть использовано для очистки отходящих газов промышленных предприятий и выхлопных газов автотранспорта
Изобретение относится к катализаторам глубокого окисления оксида углерода и может быть использовано для очистки отходящих газов промышленных предприятий и выхлопных газов автотранспорта

 


Наверх