Патенты автора Образумов Владимир Иванович (RU)

Предлагаемая группа изобретений относится к военной технике, в частности к системам управляемого оружия с лазерными полуактивными головками самонаведения (ЛПГСН). Способ одновременного наведения управляемых ракет (УР) с ЛПГСН включает определение координат целей с помощью лазерного дальномера - целеуказателя (ЛДЦ) и передачу их в пульт огневой позиции, для каждой УР расчет полетного задания и формирование в нем времени включения лазерного излучения соответствующего ЛДЦ после выстрела, передачу с пульта огневой позиции на УР полетного задания, производство выстрела, установку УР канала цифровой радиосвязи и передачу по нему сигнала для включения лазерного излучения ЛДЦ, автоматическую посылку в ЛДЦ сигнала включения лазерного излучения, наведение каждой УР на цель, подсвеченную лазерным излучением ЛДЦ. При этом при одновременном наведении на близкорасположенные цели при подготовке выстрела каждой УР и соответствующей позиции разведки и целеуказания назначают одинаковый адрес, который запоминают в позиции разведки и целеуказания и вместе с кодом частоты лазерного излучения соответствующего ЛДЦ включают в полетное задание УР. При полете с каждой УР в момент подачи сигнала на включение лазерного излучения соответствующего ЛДЦ по цифровому каналу радиосвязи передают адрес УР и код частоты лазерного излучения соответствующего ЛДЦ, в позиции разведки и целеуказания сравнивают свой адрес с принятыми адресами УР, при совпадении адреса позиции разведки и целеуказания с адресом одной из УР происходит включение лазерного излучения ЛДЦ данной позиции и подсвет цели лазерным излучением с частотой, код которой принят от соответствующей УР. Техническим результатом группы изобретений является обеспечение возможности эффективного поражения нескольких целей, в том числе и близкорасположенных, при одновременном запуске нескольких УР с ЛПГСН, повышение надежности и безопасности пуска УР, осуществление квазизалповой стрельбы, при которой ракеты выпускаются одна за другой с небольшим временным промежутком. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области управления, в частности управляемому вооружению, может найти применение в системах управления летательных аппаратов (ЛА), снарядов и ракет, у которых траекторию полета на начальном и среднем участках корректируют по данным приемника сигналов с навигационных космических аппаратов (НКА). Технический результат – повышение надежности связи ЛА с группировкой НКА на всей траектории полета, обеспечивая повышение устойчивости системы наведения ЛА. Для этого определение текущих координат ЛА дублируют второй аппаратурой спутниковой навигации, у которой ось ДН приемной антенны развернута относительно оси ДН приемной антенны первой аппаратуры спутниковой навигации на угол, при котором суммарная диаграмма направленности системы двух приемных антенн обеспечивает во всех направлениях коэффициент направленного действия не менее 0,5, при этом по количеству видимых спутников в навигации и геометрическому фактору их положения (GDOP), определяемым первой и второй аппаратурами спутниковой навигации, оценивают уровень достоверности навигационной информации, а коррекцию траектории полета ЛА производят по текущим координатам, определенным аппаратурой спутниковой навигации с более высоким уровнем достоверности. При этом в системе управления ЛА поставленная задача достигается тем, что ЛА снабжен второй аппаратурой спутниковой навигации с приемной антенной, последовательно соединенными блоком сравнения и переключателем, выход которого соединен со входом бортового вычислителя, причем первый выход первой аппаратуры спутниковой навигации и первый выход второй аппаратуры спутниковой навигации подключены соответственно к первому и второму входам блока сравнения, а второй выход первой аппаратуры спутниковой навигации и второй выход второй аппаратуры спутниковой навигации подключены соответственно ко второму и третьему входам переключателя. 2 н.п. ф-лы, 1 ил.
Изобретение относится к области управления и регулирования, а более конкретно - к управляемому вооружению. Задачей предлагаемого изобретения является реализация дистанционной проверки готовности ракетного комплекса к пуску и формирование разрешения на пуск за счет оценки реализуемости зон стрельбы и зоны подсвета цели, а также отсутствия рассогласования углов наведения пусковой установки от рассчитанных установок стрельбы наведения пусковой установки. Указанная задача выполняется за счет того, что осуществляется топографическая привязка целеуказателя и пусковой установки к местности, обнаружение цели целеуказателем, измерение целеуказателем координат цели и передача их в пульт управления огневой позиции, вывод оператору сигнала запрета стрельбы на пульте управления, в пульте управления проверка соответствия дальности до цели с позиции пусковой установки допустимому диапазону дальностей стрельбы, расчет установок стрельбы управляемой ракеты и пусковой установки, в пульте управления проверка соответствия того, что углы наведения пусковой установки находятся вне диапазона углов запрета стрельбы комплекса, передача установок стрельбы по пусковой установке и ракете в блок автоматики пусковой установки и далее в ракету, наведение пусковой установки, контроль в пульте управления готовности ракеты к пуску, формирование разрешения на пуск при готовности ракеты и при отсутствии рассогласования наведения пусковой установки и установок стрельбы пусковой установки с предельно допустимыми отклонениями по углу азимута ±Δβ и углу места ±Δε, абсолютные величины которых принадлежат диапазону величин от 0,1° до 5°, подача с пульта управления огневой позиции в блок автоматики пусковой установки команды на пуск и производство пуска. Кроме того, при формировании разрешения на пуск управляемой ракетой с лазерной полуактивной головкой самонаведения до расчета установок стрельбы выполняют проверку соответствия дальности от целеуказателя до цели допустимому диапазону дальности подсвета, и соответствия угла подсвета цели допустимому отклонению до ±60° от направления биссектрисы стрельбы. 2 з.п. ф-лы.

Группа изобретений относится к управляемому стратегическому вооружению, в частности к сверхзвуковым летательным аппаратам и способам реализации их полета. Сверхзвуковой летательный аппарат содержит стартовый двигатель с механизмом разделения ступеней, маршевую ступень с планером и с функциональными блоками. Маршевая ступень помещена в защитный обтекатель, раскрывающийся при отделении двигателя. Планер маршевой ступени выполнен по самолетной схеме «низкоплан» с элементами вертикального оперения, обеспечивающими устойчивость планера по крену. Оперение заневоленно защитным обтекателем. Способ реализации полета сверхзвукового летательного аппарата заключается в использовании программируемой амплитуды рикошетирования. На этапе погружения в атмосферу изменение вектора аэродинамической силы осуществляют путем выбора оптимального угла атаки. Запуск летательного аппарата осуществляют с установки под траекторным углом от 50 до 85° к горизонту. Летательный аппарат выводят по баллистической траектории в разреженные слои атмосферы на высоты от 50 до 70 км. Достигается уменьшение аэродинамических нагрузок. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области стабилизации боеприпасов, а именно к вращающемуся стабилизатору управляемой ракеты. Включает корпус с установленными на нем складывающимися лопастями и блокирующее устройство. Корпус кинематически связан с корпусом ракеты опорой качения. Последняя выполнена в виде двух подшипников, переднего и заднего. Подшипники включают установленные в сепараторах шарики, разрезные кольца из проволоки круглого сечения, установленные в углах прямоугольных канавок на корпусах стабилизатора и ракеты. При этом канавки заднего подшипника образованы расточками корпусов стабилизатора и ракеты и торцами кольцевых гаек. Одна из гаек выполнена с возможностью регулировки зазоров в подшипнике. Передний подшипник выполнен с возможностью самоустановки корпуса стабилизатора путем введения опорного кольца, установленного в его расточке. Позволяет уменьшить радиальные размеры опоры качения, упростить конструкцию вращающегося стабилизатора. 1 з.п. ф-лы, 3 ил.

Группа изобретений относится к области ракетной техники. Способ отделения маршевой ступени ЛА включает механическое удержание в разомкнутом состоянии цепи запуска электровоспламенителя механизма разделения ступеней при пуске ЛА на стартовом участке траектории полета. На борту ЛА в процессе полета измеряют величину продольного ускорения и определяют скорость его изменения во времени, фиксируют момент смены знака производной продольного ускорения с отрицательного на положительный и замыкают электрическую цепь запуска электровоспламенителя механизма разделения ступеней. ЛА с отделяемым двигателем содержит маршевую ступень и пристыкованный к ней двигатель с механизмом разделения ступеней, снабженным электровоспламенителем. В маршевой ступени параллельно продольной оси ЛА установлен исполнительный механизм дистанционного инерционного действия, выполненный в виде токонепроводящего корпуса с неподвижной контактной группой и токопроводящего инерционного тела, запираемого силовой пружиной в сторону механизма разделения ступеней. Техническим результатом является исключение нештатного разделения двигателя и маршевой ступени при подготовке и проверках ЛА перед пуском. 2 н.п. ф-лы, 1 ил.

Система испытаний летательных аппаратов с телеметрической системой регистрации основных параметров содержит установленные на летательном аппарате (ЛА) функциональные блоки, аппаратуру управления, бортовой телеметрический передающий модуль (БТПМ) с антенной и наземный приемный пункт с антенной. На наземном приемном пункте установлена аппаратура телеметрической системы регистрации, которая содержит пульт управления, вычислитель, привод наведения, соединенные определенным образом. Обеспечивается устойчивый прием телеметрической информации с борта ЛА при больших дальностях полета и сложных профилях его траектории. 1 ил.

Группа изобретений относится к военной технике. При способе испытания летательных аппаратов (ЛА) перед пуском ЛА рассчитывают и вводят в наземную аппаратуру телеметрической системы регистрации координаты положения антенны наземного приемного пункта (НПП). В процессе полета ЛА определяют его текущие координаты. Включают их в информационные пакеты телеметрической информации, которую считывают с функциональных блоков ЛА и преобразуют в двоичный код. Сформированные информационные пакеты излучают в направлении наземного приемного пункта (НПП). Осуществляют прием и обработку переданной информации в НПП в режиме реального времени. По полученным координатам ЛА рассчитывают направление на ЛА, с которым совмещают ось диаграммы направленности антенны НПП. Система испытаний ЛА с телеметрической системой регистрации основных параметров содержит установленные на ЛА функциональные блоки, аппаратуру управления, бортовой телеметрический передающий модуль (БТПМ), аппаратуру спутниковой навигации. Наземная аппаратура телеметрической системы регистрации содержит НПП с антенной, пульт управления, вычислитель, привод наведения, соединенные определенным образом. Обеспечивается устойчивый прием телеметрической информации с борта ЛА. 2 н.п. ф-лы, 1 ил.

Изобретение относится к военной технике и может быть использовано в управляемых ракетах (УР). Комплекс управления и связи выносного пункта управления для стрельбы УР из пусковой установки содержит средство связи с наблюдательной позицией, пульт командира с дополнительным интерфейсом и аппаратурой спутниковой навигации, цифровой канал связи, лазерный гирокомпас на пусковой установке, блок автоматики, средство связи с наблюдательной позицией в виде терминала спутниковой связи, аппаратуру спутниковой навигации в виде датчика данных об эфемеридах, блок дистанционной передачи на УР по радиоканалу полетного задания. Изобретение позволяет повысить эффективную дальность поражения целей УР. 1 з.п. ф-лы, 2 ил.

Группа изобретений относится к области ракетной техники и может быть использована в атмосферных ракетах, в частности в управляемых бикалиберных ракетах. Бикалиберная ракета содержит ракетный двигатель твердого топлива. Ракетный двигатель твердого топлива представляет собой часть двигательной установки, конструктивно объединяющей его с ракетно-прямоточным двигателем. Переднее днище двигательной установки снабжено воздухозаборным устройством, размещенным в кольце, образованном перепадом калибров маршевой ступени и двигательной установки. Газогенератор ракетно-прямоточного двигателя размещен в камере сгорания ракетного двигателя концентрично с его топливным зарядом. Способ расширения зоны применимости бикалиберной ракеты по дальности включает разгон ракеты на восходящей ветви траектории ракетным двигателем твердого топлива, последующее его отделение и полет маршевой ступени по инерции. Для увеличения дальности полета после окончания работы ракетного двигателя твердого топлива включают ракетно-прямоточный двигатель. Открывают воздухозаборное устройство, трансформируют сопло ракетного двигателя, увеличивая его критическое сечение, и используют камеру сгорания ракетного двигателя в качестве камеры дожигания ракетно-прямоточного двигателя. После окончания работы ракетно-прямоточного двигателя его отделяют вместе с ракетным двигателем. Для уменьшения дальности полета после окончания работы ракетного двигателя ракетно-прямоточный двигатель не включают и отделяют их с программируемым временем задержки. Достигается увеличение максимальной дальности полета ракеты. 2 н. и 2 з.п. ф-лы, 9 ил.
Изобретение относится к области вооружения и может быть использовано для стрельбы управляемой ракетой (УР). Производят топографическую привязку целеуказателя и пусковой установки (ПУ) к местности наземным спутниковым приемником (СП), определяют координаты местоположения ПУ и эфемерид по каждому космическому аппарату системы спутникового позиционирования, обнаруживают и измеряют координаты цели, передают координаты цели в пульт управления огневой позиции (ОП), устанавливают единое компьютерное время в пульте разведчика и пульте управления ОП, рассчитывают и передают установки стрельбы в блок автоматики ПУ и ракету, осуществляют наведение ПУ, запускают ракету из транспортно-пускового контейнера по заданной баллистической траектории, осуществляют наведение ракеты бортовым навигационным СП, при подлете к цели осуществляют наведение ракеты по лазерному излучателю. Изобретение позволяет повысить вероятность попадания УР в заданную цель.
Изобретение относится к военной технике и может быть использовано при стрельбе управляемой ракетой (УР). Производят топографическую привязку целеуказателя и пусковой установки (ПУ) к местности, обнаруживают и измеряют координаты цели, передают координаты цели в пульт управления огневой позиции, рассчитывают и передают в диалоговом режиме установки стрельбы в блок автоматики ПУ и ракету, задают время ожидания готовности ракеты к пуску, осуществляют контроль готовности ракеты к пуску, формируют разрешение на пуск ракеты из совокупности признаков готовности бортовой навигационной спутниковой аппаратуры (количество наблюдаемых спутников не менее количества спутников, заданных оператором, канала головки самонаведения, высотометра, параметров полетного задания, канала связи с УР), производят пуск ракеты. Изобретение позволяет повысить надежность и безопасность пуска УР, вероятность попадания УР в заданную цель. 3 з.п. ф-лы.

Изобретение относится к области вооружения, в частности к управлению ракетой с лазерной полуактивной головкой самонаведения, захватывающей подсвеченную цель на конечном участке траектории. Изобретение предназначено для управления огнем минометов и ствольной артиллерии при стрельбе управляемыми боеприпасами, в том числе управляемыми ракетами. Дополнительно определяют угол места цели относительно целеуказателя и устанавливают единое компьютерное время в ракете. После пуска ракеты последовательно осуществляют топопривязку к местности летящей ракеты с помощью аппаратуры спутниковой навигации, обнаружение второй, более приоритетной, цели, измерение целеуказателем азимута, угла места и дальности до второй цели, топографическую привязку второй цели к местности в пульте разведчика, передачу координат второй цели из пульта разведчика в пульт управления огневой позиции по цифровой радиосвязи, расчет установок стрельбы ракеты по второй цели и передачу их на ракету по цифровой радиосвязи, разворот и наведение ракеты на вторую цель, а также передачу в пульт управления огневой позиции с ракеты сообщения о работе по второй цели. Техническим результатом изобретения является обеспечение возможности перенацеливания ракеты во время полета при стрельбе на дальность более 50 км по движущейся цели или второй, более приоритетной, цели. 1 ил.

Изобретение относится к области вооружения, а именно к способу и системам управления ракетами, вращающимися по углу крена, и может быть использовано в системах управления, формирующих на борту команды управления. Технический результат - повышение точности. Для этого до старта ракеты измеряют или заранее задают величину ее начального угла крена φ0, запоминают соответствующий ей сигнал и с него начинают интегрирование сигнала угловой скорости вращения ракеты, при достижении интегрированной величины сигнала, соответствующей углу крена ракеты равному 360°, устанавливают интегратор в нулевое состояние, после чего процесс интегрирования повторяют, дополнительно используют на ракете датчик магнитного поля Земли, сигнал которого преобразуют в прямоугольные колебания с угловым интервалом 360°, вырабатывают в заданный момент времени сигнал, разрешающий прохождение фронтов спада и нарастания прямоугольных колебаний, в момент прохождения первого фронта спада или нарастания измеряют величину интегрированного сигнала A1, соответствующую величине угла крена ракеты φ1, при выполнении условия φмакс>φ1>φмин запоминают величину A1, соответствующую φ1, где φмакс и φмин - соответственно максимальная и минимальная назначенные величины угла крена ракеты. 2 н. и 3 з.п. ф-лы, 2 ил.

Изобретение относится к области радиотехники СВЧ и КВЧ диапазонов и может быть использовано в радиолокационных системах с моноимпульсным методом пеленгации целей для облучения антенн апертурного типа

Изобретение относится к области радиотехники СВЧ- и КВЧ-диапазонов, в частности к конструкциям моноимпульсных антенн, и может быть использовано в радиолокационных системах с моноимпульсным методом пеленгации целей как самостоятельно, так и в качестве облучателей антенн апертурного типа в виде фазированных антенных решеток, зеркальных и линзовых антенн, обеспечивающих приемопередающий режим работы

Изобретение относится к военной технике, к пусковым установкам зенитных комплексов ближнего действия

Изобретение относится к области противовоздушной обороны

Изобретение относится к военной технике и может быть использовано в танках, боевых машинах пехоты и самоходных зенитных установках, эксплуатируемых в странах с жарким климатом

Изобретение относится к военной технике, в частности к модулю управления комплекса вооружения

Изобретение относится к военной технике, в частности к боевым машинам

Изобретение относится к ракетной технике и может быть использовано в комплексах вооружения телеуправляемых ракет

 


Наверх