Патенты автора Носачев Леонид Васильевич (RU)

Изобретение относится к синтезу наноалмазов для использования в элементах оптической памяти для квантовых компьютеров высокой производительности. Способ включает подготовку углеродсодержащей смеси, ее размещение в камере высокого давления, инициирование в углеродсодержащей смеси интенсивной ударной волны, фильтрацию и сепарацию продуктов синтеза, при этом в качестве углеродсодержащей смеси выбирают смесь на основе предельных углеводородов гомологического ряда алканов с общей формулой CnH2n+2 с числом углеродных атомов 16 и выше, нагревают ее до температуры выше 300 K, пропускают через нее метан под давлением выше 0,1 МПа и формируют в углеродсодержащей смеси импульсный электрический разряд. Изобретение позволяет получать наноалмазы высокой чистоты, в частности без примеси азота, размером от 3 до 10 нм с улучшенными тепло- и электрофизическими свойствами. 1 ил.

Группа изобретений относится к военной технике, а именно к активно-реактивным снарядам. Технический результат - увеличение высоты и вероятности поражения быстролетящей цели средствами противовоздушной и противоракетной обороны за счет улучшения полноты сгорания топлива, топливной эффективности и массо-габаритных характеристик высотного активно-реактивного снаряда. Устройство содержит головной взрыватель, привинтную головку, корпус боевой части, взрывчатое вещество, ведущий поясок и ракетно-прямоточный двигатель. Этот двигатель размещен в кормовой части снаряда и содержит газогенератор с зарядом твердого топлива, опорной решеткой и примыкающей к ней таблеткой из баллистического топлива, камеру дожигания, кольцевой воздухозаборник. Камера дожигания выполнена цилиндрической, расположена за опорной решеткой газогенератора и имеет щелевые сопла. В корпусе боевой части вместе со взрывчатым веществом размещены поражающие элементы. Камера дожигания обеспечивает возможность высокотемпературного дожигания продуктов сгорания топлива газогенератора в пульсирующем режиме с частотой в диапазоне от 200 до 3000 Гц. На выходе камеры дожигания обеспечена скорость истечения продуктов горения порядка 2000 м/с. С помощью щелевых сопл обеспечена возможность формирования плоских струй стабилизации управления активно-реактивного снаряда. В составе группы изобретений предусмотрен способ функционирования высотного активно-реактивного снаряда. При движении активно-реактивного снаряда по каналу ствола запускают ракетно-прямоточный двигатель. Выводят высотный активно-реактивный снаряд в расчетную точку вероятной встречи с быстролетящей целью. Подрывают боевую часть высотного активно-реактивного снаряда, обеспечивают разлет поражающих элементов. Создают завесу из них. Обеспечивают взаимодействие поражающих элементов с быстролетящей целью и ее разрушение. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к области авиации, в частности к конструкциям летательных аппаратов с вертикальным взлетом и посадкой. Летательный аппарат с вертикальным взлетом и посадкой содержит корпус с верхней и нижней аэродинамическими поверхностями, электрореактивный двигатель с устройством генерации и ускорения отрицательно заряженных ионов, средства взлета/посадки, электропитания, коммуникации и управления. В верхней части корпуса на пилонах установлен обтекатель, формирующий с верхней аэродинамической поверхностью корпуса регулируемое кольцевое щелевое сопло, перед которым с внутренней стороны корпуса установлен вентилятор с плоским блоком сетчатых электродов на входе и решеткой профилей на выходе вентилятора. Обеспечивается увеличение подъемной силы летательного аппарата, улучшение массогабаритных характеристик. 1 ил.

Изобретение относится к области измерительной техники и касается способа регистрации вакуумного ультрафиолета. Способ основан на регистрации вторичного излучения люминесцирующего вещества и заряженных частиц, генерируемых вакуумным ультрафиолетом. В качестве люминесцирующего вещества используются наноалмазы, на основе которых формируют термостойкое покрытие толщиной порядка одного микрона на поверхности чувствительного элемента. 2 ил.

Изобретение относится к области вооружения, а именно к бронебойным боеприпасам, в частности к снарядам с реактивным двигателем, запускаемым из ствола орудия. Бронебойный боеприпас содержит гильзу с метательным зарядом и снаряд. Последний включает поддон, закрепленный в нем бронебойный сердечник из материала высокой прочности и плотности и донный газогенератор. Бронебойный сердечник имеет коммулятивную выемку с зарядом ВВ и средствами его подрыва, соединенную с цилиндрической полостью донного газогенератора, заполненной пиротехническим составом, и снабжен струйным стабилизатором. Последний сформирован плоскими газовыми струями, истекающими при работе донного газогенератора. Повышает величину бронепробития и вероятности поражения бронированной цели на большой дальности. 2 ил.

Изобретение относится к области химии и водородной энергетики и может быть использовано в энергетике и транспортном машиностроении. Способ получения и хранения атомарного водорода включает электролиз воды с использованием в электролизной ячейке медного анода и катода из сплава дюральалюминия, периодически активируемого электрическим током, воздействие на полученный водород магнитным полем с амплитудой магнитной индукции в диапазоне от 100 до 120 гаусс и пропускание атомарного водорода через нанодисперсный углерод, содержащий углеродные нанотрубки. Изобретение позволяет увеличить срок хранения атомарного водорода, а также повысить топливную эффективность и экологичность получения и хранения водорода. 1 ил.

Изобретение относится к транспортному машиностроению, в частности к устройствам очистки воздуха, и может быть использовано для судовых энергетических установок при очистке воздуха от морской воды, соли и твердых частиц на входе судовых газотурбинных двигателей. Устройство очистки воздуха содержит корпус, инерционный сепаратор, коагулятор и устройство для сбора и отвода выделенных из воздуха частиц аэрозоля. Инерционный сепаратор состоит, по крайней мере, из одного пакета зигзагообразных вертикально ориентированных профилей с влагоулавливающими элементами. Влагоулавливающие элементы установлены в зигзагообразных каналах инерционного сепаратора, образованных вертикально ориентированными профилями, как у вершин, так и во впадинах каждой волны профиля. Зигзагообразные вертикально ориентированные профили имеют переднюю и заднюю кромки в виде влагоулавливающих элементов, а коагулятор выполнен распределенным по всему объему инерционного сепаратора в виде сетчатых элементов, установленных на влагоулавливающих элементах инерционного сепаратора. Технический результат заключается в устранении вибраций и повышении степени очистки воздуха. 1 з.п. ф-лы, 3 ил.

Изобретение относится к энергетическому оборудованию и может быть использовано в водородной энергетике для получения, хранения и транспортировки водорода. Устройство для получения атомарного водорода содержит реактор 1, работающий на разложении воды твердым реагентом, анод 3, катод 4 и магистрали 8 с арматурой для ввода исходного сырья в реактор 1 и вывода из него водорода и продуктов реакции. В качестве твердого реагента выбран нанодисперсный углерод, размещенный на поверхности анода 3 в воде между анодом 3 и катодом 4. На магистрали вывода водорода из реактора 1 установлены приемник водорода, электромагнит 10 с блоком управления магнитной индукцией 11 и аккумулятор водорода 12 с углеродными нанотрубками. Кроме того, устройство содержит регулятор 6 подводимой к реактору 1 электрической мощности в зависимости от температуры нанодисперсного углерода 5 в прианодном пространстве и заданного программой темпа получения водорода. Изобретение позволяет радикально увеличить срок хранения атомарного водорода для последующего использования в технологических процессах. 1 ил.

Изобретение относится к химии и водородной энергетике и может быть использовано в транспортном машиностроении. Водород получают в генераторе 1, направляют в приёмник 2, разделяют на два потока 3 и воздействуют на них импульсным магнитным полем с амплитудой магнитной индукции В более 100 гаусс. Затем пропускают через аккумуляторы атомарного водорода 6, заполненные нанодисперсным углеродом, содержащим углеродные нанотрубки с удельной поверхностью от 200 до 550 м2/г в качестве микроконтейнеров для хранения водорода, при пульсирующем давлении водорода с амплитудой более 0,1 МПа. Обеспечивается надёжное и безопасное хранение водорода. 1 ил.
Изобретение относится к активной тепловой защите теплонапряженных элементов конструкции летательного аппарата (ЛА), управлению его обтеканием и работой силовой установки. Способ включает формирование защитного слоя из продуктов разложения метангидрата (смеси паров воды и метана). Последние вводят через открытый вход газоструйного резонатора навстречу набегающему потоку под давлением в пульсирующем режиме с частотой более 100 Гц. Модуляция аэродинамического сопротивления способствует устойчивости пограничного слоя в окрестности защищаемых элементов конструкции ЛА. При поглощении энергии набегающего потока и излучения головной ударной волны происходят диссоциация молекул воды и метана и реакции синтеза. Компоненты разложения метангидрата, а также продукты синтеза водорода и ацетилена направляют в камеру сгорания силовой установки ЛА. Технический результат изобретения заключается в снижении пиковых тепловых нагрузок на элементы конструкции ЛА, увеличении срока их службы и повышении топливной эффективности силовой установки ЛА.

Изобретение относится к авиационной и ракетной технике, в частности к активной тепловой защите теплонапряженных передних кромок гиперзвукового беспилотного летательного аппарата (БПЛА). Устройство активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового БПЛА содержит теплоноситель и средства формирования теплозащитного слоя. Внутри носовой части БПЛА между его передней кромкой и камерой сгорания силовой установки размещен цилиндрический газоструйный резонатор с системой управляемых клапанов, расположенных на боковой стенке резонатора. Открытый вход резонатора совмещен с передней кромкой БПЛА и направлен навстречу набегающему потоку. На внешней поверхности резонатора установлены контейнер с теплоносителем в виде метангидрата и преобразователь метангидрата в смесь паров воды и метана, которая, находясь под давлением в пульсирующем режиме с частотой более 100 Гц, с помощью системы управляемых клапанов газоструйного резонатора обеспечивает возможность формирования на открытом входе резонатора защитного слоя, предохраняющего переднюю кромку БПЛА от пиковых тепловых нагрузок. Достигается снижение пиковые тепловые нагрузки на элементы конструкции гиперзвукового БПЛА и повышение топливной эффективности его силовой установки. 1 ил.

Изобретение относится к транспортному машиностроению, в частности к системам очистки воздуха на входе судовых газотурбинных двигателей. Система очистки воздуха включает сепаратор с конфузором, горловиной, диффузором и капле-пылеуловителем, установленные в воздуховоде, и устройство для сбора и отвода выделенных из воздуха частиц аэрозоля. В горловине сепаратора установлены направляющий аппарат из плоских профилей и решетка аэродинамических профилей с разрезной задней кромкой и перфорированной их выпуклой аэродинамической поверхностью. Технический результат: высокая надежность, гидравлические потери не превышают 200 Па и низкий уровень эксплуатационных расходов. 1 ил.

Изобретение относится к транспортному машиностроению, в частности к устройствам для очистки воздуха от твердых частиц, капель морской воды и соли на входе судовых газотурбинных двигателей. Устройство включает инерционный сепаратор в виде, по крайней мере, одного пакета вертикально ориентированных профилей с влагоулавливающими элементами, коагулятор и устройство для сбора и отвода выделенных из воздуха частиц аэрозоля. Передняя кромка профилей выполнена острой, задняя - разрезной в виде влагоулавливающего элемента, а коагуляторы в виде заостренных шевронов установлены на передних кромках влагоулавливающих элементов. Монолитность конструкции вертикально ориентированных профилей с влагоулавливающими элементами обеспечивает технологичность их массового производства с помощью фильер. 2 ил.

Гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД) содержит корпус, воздухозаборник с центральным телом, внутри которого установлена топливная форсунка в виде газоструйного резонатора с острой передней кромкой, соединенной пилонами с воздухозаборником, камеру сгорания, воспламенитель, сопло, систему управления и твердотопливный картридж для стартового разгона. Способ организации рабочего процесса в ГПВРД заключается в сжигании твердотопливного заряда картриджа, сжатии воздуха в воздухозаборнике, генерировании внутренних ударных волн в проточной части двигателя, подаче в камеру сгорания через топливную форсунку нанодисперсного топлива, содержащего углеродные нанотрубки с капсулированным в них водородом, организации пульсирующего режима горения топливовоздушной смеси в камере сгорания с частотой в диапазоне от 100 до 4000 герц, расширении продуктов горения в сопле и регулировании режима горения. Изобретение направлено на повышение темпа набора скорости, улучшение полноты сгорания топлива и совершенствование массогабаритных характеристик летательного аппарата с ГПВРД. 2 н.п. ф-лы, 1 ил.

Способ организации детонационного режима горения в камере сгорания гиперзвукового прямоточного воздушно-реактивного двигателя включает сжатие воздуха в системе внешних и внутренних скачков уплотнения, возникающих на фиксированных и регулируемых элементах фюзеляжа и силовой установки, подачу топлива за внешней системой скачков перед камерой сгорания, формирование на ее входе детонационной волны. Детонационное горение топливовоздушной смеси осуществляют в камере сгорания, регулируя положения детонационной волны в камере сгорания в зависимости от числа Маха потока на входе в камеру сгорания посредством изменения геометрических параметров камеры сгорания и химического состава поступающей топливовоздушной смеси. Осуществляют последующее расширение продуктов горения в сопле. Топливовоздушную смесь создают на основе нанодисперсного топлива, содержащего углеродные нанотрубки с капсулированным в них водородом, которое вводят перед камерой сгорания через отверстия игольчатой топливной форсунки навстречу набегающему потоку. Генерируют в зоне горения пульсирующее электрическое поле напряженностью более 20 В/см. Изобретение направлено на повышение скорости горения топлива, улучшение полноты сгорания и топливной эффективности двигателя. 1 ил

Изобретение относится к техническим средствам освоения ресурсов Мирового океана и может быть применено для добычи метангидратов. Способ разработки залежей метангидратов основан на их дроблении струями воды при температуре выше 285К со скоростью более 1 м/с в пульсирующем режиме с частотой в диапазоне от 1 до 200 Гц, газификации и подъеме с морского дна. Устройство для разработки метангидратов содержит плавсредство, подъемно-транспортное оборудование, энергоблок, трубопроводы, блок управления и агрегат подводной разработки метангидратов, в корпусе которого установлены инфракрасный нагреватель, водоструйный монитор со средствами подвода воды под давлением и газоотводчик. Технический результат заключается в повышении энергоэффективности подводной разработки метангидратов и подъеме их на плавсредство. 2 н.п. ф-лы, 1 ил.

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит воздухозаборник, топливную форсунку, расположенную в носовой части перед воздухозаборником по его оси и соединенную с ним пилонами, камеру сгорания, воспламенитель и сопло. Топливная форсунка выполнена в виде газоструйного резонатора с острой передней кромкой, вход которого совмещен с носовой частью двигателя и обращен навстречу набегающему потоку. Боковая и задняя стенки газоструйного резонатора выполнены пористыми с управляемой скважностью. При горении топливовоздушной смеси в камере сгорания гиперзвукового прямоточного воздушно-реактивного двигателя через топливную форсунку подают нанодисперсное топливо, содержащее углеродные нанотрубки с капсулированным в них водородом, двумя потоками: через вход газоструйного резонатора навстречу набегающему потоку и через его пористые стенки и создают в зоне горения пульсирующее электрическое поле напряженностью более 20 В/см. Изобретение позволяет улучшить подготовку топливовоздушной смеси, повысить полноту сгорания топлива и топливную эффективность двигателя. 2 н.п. ф-лы, 1 ил.

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит воздухозаборник с центральным телом, камеру сгорания, топливную форсунку, соединенную пилонами с воздухозаборником, и систему управления. Топливная форсунка установлена в центральном теле воздухозаборника и выполнена в виде газоструйного резонатора с острой передней кромкой. Вход газоструйного резонатора совмещен с носовой частью центрального тела и обращен навстречу набегающему потоку воздуха, а его внутренняя полость соединена с топливной системой. Задняя стенка и часть боковой стенки газоструйного резонатора выполнены пористыми с управляемой скважностью. На внешней стороне задней стенки газоструйного резонатора размещен плоский воспламенитель с отверстиями, электрически соединенный с системой управления двигателя и источником пульсирующего электрического поля. Через топливную форсунку перед воздухозаборником подают нанодисперсное топливо, содержащее углеродные нанотрубки с капсулированным в них водородом двумя потоками: через вход газоструйного резонатора навстречу набегающему потоку воздуха и через его пористые стенки. Создают между воспламенителем на задней стенке газоструйного резонатора и камерой сгорания пульсирующий электрический разряд с частотой в диапазоне от 0,1 до 25 кГц. Изобретение направлено на улучшение процессов подготовки и горения топливовоздушной смеси, повышение полноты сгорания топлива и топливной эффективности двигателя, а также совершенствование его массогабаритных характеристик. 2 н.п. ф-лы, 1 ил.

Изобретение относится к вертолетостроению. Несущий винт вертолета содержит втулку винта, сбалансированные и совмещенные на одной оси одним из двух своих концов несколько лопастей с рабочими аэродинамическими поверхностями, имеющими по диаметру винта передние и задние кромки. На нижних рабочих аэродинамических поверхностях лопастей несущего винта установлены тонкие перегородки высотой в диапазоне от 5 до 15 мм вдоль дуг окружностей диаметром Di, соответствующим i-той перегородке в диапазоне значений Di от 0,2 до 1 диаметра несущего винта DHB , с шагом в диапазоне от 0,03 до 0,1 DHB . Изобретение направлено на увеличение аэродинамической подъемной силы жесткого несущего винта и повышение топливной эффективности вертолета. 2 ил.

Вертолет // 2494924
Изобретение относится к области авиации, в частности к конструкциям вертолетов. Вертолет содержит фюзеляж с кабиной, средствами взлета и посадки, органами управления и силовую установку с несущим и толкающим винтами. Фюзеляж имеет обтекаемую дискообразную форму и на нем установлена аэродинамическая поверхность в виде крыла, интегрированного с профилированным полукольцом, охватывающим жесткий несущий винт. Внутри вертолета размещена система управления обтеканием фюзеляжа с установленными на верхней аэродинамической поверхности щелевыми воздухозаборными устройствами и соплами наддува воздуха на нижней аэродинамической поверхности фюзеляжа вертолета. Повышается топливная эффективность и скорость полета вертолета. 2 ил.

Вертолет // 2494924
Изобретение относится к области авиации, в частности к конструкциям вертолетов. Вертолет содержит фюзеляж с кабиной, средствами взлета и посадки, органами управления и силовую установку с несущим и толкающим винтами. Фюзеляж имеет обтекаемую дискообразную форму и на нем установлена аэродинамическая поверхность в виде крыла, интегрированного с профилированным полукольцом, охватывающим жесткий несущий винт. Внутри вертолета размещена система управления обтеканием фюзеляжа с установленными на верхней аэродинамической поверхности щелевыми воздухозаборными устройствами и соплами наддува воздуха на нижней аэродинамической поверхности фюзеляжа вертолета. Повышается топливная эффективность и скорость полета вертолета. 2 ил.

Вертолет // 2494924
Изобретение относится к области авиации, в частности к конструкциям вертолетов. Вертолет содержит фюзеляж с кабиной, средствами взлета и посадки, органами управления и силовую установку с несущим и толкающим винтами. Фюзеляж имеет обтекаемую дискообразную форму и на нем установлена аэродинамическая поверхность в виде крыла, интегрированного с профилированным полукольцом, охватывающим жесткий несущий винт. Внутри вертолета размещена система управления обтеканием фюзеляжа с установленными на верхней аэродинамической поверхности щелевыми воздухозаборными устройствами и соплами наддува воздуха на нижней аэродинамической поверхности фюзеляжа вертолета. Повышается топливная эффективность и скорость полета вертолета. 2 ил.

Вертолет // 2494924
Изобретение относится к области авиации, в частности к конструкциям вертолетов. Вертолет содержит фюзеляж с кабиной, средствами взлета и посадки, органами управления и силовую установку с несущим и толкающим винтами. Фюзеляж имеет обтекаемую дискообразную форму и на нем установлена аэродинамическая поверхность в виде крыла, интегрированного с профилированным полукольцом, охватывающим жесткий несущий винт. Внутри вертолета размещена система управления обтеканием фюзеляжа с установленными на верхней аэродинамической поверхности щелевыми воздухозаборными устройствами и соплами наддува воздуха на нижней аэродинамической поверхности фюзеляжа вертолета. Повышается топливная эффективность и скорость полета вертолета. 2 ил.

Вертолет // 2494924
Изобретение относится к области авиации, в частности к конструкциям вертолетов. Вертолет содержит фюзеляж с кабиной, средствами взлета и посадки, органами управления и силовую установку с несущим и толкающим винтами. Фюзеляж имеет обтекаемую дискообразную форму и на нем установлена аэродинамическая поверхность в виде крыла, интегрированного с профилированным полукольцом, охватывающим жесткий несущий винт. Внутри вертолета размещена система управления обтеканием фюзеляжа с установленными на верхней аэродинамической поверхности щелевыми воздухозаборными устройствами и соплами наддува воздуха на нижней аэродинамической поверхности фюзеляжа вертолета. Повышается топливная эффективность и скорость полета вертолета. 2 ил.

Изобретение относится к летательным аппаратам тяжелее воздуха с вертикальным взлетом и посадкой, в частности к способам создания подъемной силы у летательных аппаратов с электрической силовой установкой

Изобретение относится к воздушному транспорту с вертикальным взлетом и посадкой

Изобретение относится к нанотехнологии

Изобретение относится к силовым установкам для получения тяги и обеспечения движения летательных аппаратов различного назначения

Изобретение относится к авиационной технике и может быть использовано при разработке малоразмерных беспилотных летательных аппаратов (БПЛА) различного назначения

Изобретение относится к нанотехнологиям и может быть использовано при получении углеродных наноматериалов, в частности наноалмазов, фуллеренов и углеродных нанотрубок

Изобретение относится к нанотехнологиям и может быть использовано для создания покрытий из наноалмазов, фуллеренов и углеродных нанотрубок, работающих в экстремальных условиях

Изобретение относится к транспортному машиностроению, в частности к авиадвигателестроению, и может быть использовано для наземных испытаний и исследования характеристик пульсирующего детонационного двигателя

Изобретение относится к авиационной технике и может быть использовано при разработке мини- и микробеспилотных летательных аппаратов различного назначения

Изобретение относится к водородной энергетике и может быть использовано для получения водорода, в частности, при подземной переработке нерентабельных залежей угля

Изобретение относится к измерению полного давления и может быть использовано для определения скорости нестационарных газовых потоков

Изобретение относится к нанотехнологиям и может быть использовано при получении твердофазных наноструктурированных материалов, в частности ультрадисперсных алмазов, фуллеренов и углеродных нанотрубок

Изобретение относится к нанотехнологиям и может быть использовано при получении углеродных нанотрубок

Изобретение относится к машиностроению, преимущественно к силовым и энергетическим установкам, и может быть использовано для получения тяги

Изобретение относится к измерению полного давления и может быть использовано для измерения давления и пульсаций давления в пульсирующих струях с детонационным горением
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх