Патенты автора Тимофеев Анатолий Николаевич (RU)

Группа изобретений относится к изготовлению металлических изделий селективным лазерным спеканием. Установка содержит герметичную камеру, вакуумную систему, блок подачи инертного газа, систему очистки инертного газа, систему циркуляции инертного газа, систему водоохлаждения инертного газа, загрузочный бункер для порошкового материала, опору для поддержки формируемого изделия, выравниватель, лазерную систему для спекания порошкового материала, систему охлаждения лазерной системы, систему управления, дозатор порошкового материала и вакуумное шлюзовое устройство, соединяющее загрузочный бункер и дозатор между собой. Загрузочный бункер, вакуумное шлюзовое устройство, дозатор и лазерная система расположены внутри герметичной камеры в верхней ее части, опора для поддержки формируемого изделия расположена в нижней части герметичной камеры и состоит из подогреваемого основания и подложки. Герметичная камера оснащена клапаном избыточного давления и по меньшей мере двумя вентиляционными отверстиями, которые соединены с блоком подачи инертного газа, системой циркуляции инертного газа, вакуумной системой. Обеспечивается улучшение эксплуатационных характеристик изготавливаемых изделий, снижение вероятности образования дефектов в процессе изготовления. 2 н. и 14 з.п. ф-лы, 2 ил.
Изобретение относится к производству высокотемпературных композиционных материалов, обладающих высокой окислительной стойкостью, и может быть использовано в теплонагруженных узлах ракетно-космической и авиационной техники, в автомобиле- и тракторостроении для изготовления узлов очистки выхлопных газов, подшипников скольжения и торцевых уплотнений. Способ получения композиционного материала, имеющего пористый волокнистый карбидокремниевый каркас, включает осаждение карбида кремния на упомянутый каркас из газовой фазы метилсилана CH3SiH3 при температуре 550-700°С и давлении 50-130 Па с периодической откачкой реактора в течение 1-60 с со снижением давления до 0,1 Па. Обеспечивается увеличение скорости осаждения карбида кремния из метилсилана и уменьшение сажеобразования.

Изобретение относится к получению прутковых заготовок для центробежного плазменного распыления из интерметаллидного сплава. В аттритор засыпают смесь порошков для получения интерметаллидного сплава, создают защитную среду, проводят механохимический синтез в высокоэнергичном режиме со скоростью вращения вала мешалки 20-600 мин-1 при одновременном охлаждении аттритора с обеспечением получения дисперсной микроструктуры сплава с размером зерен менее 10 мкм. После окончания механохимического синтеза аттритор переводят режим работы со скоростью вращения вала мешалки 30-40 мин-1 и пересыпают полученный порошок сплава в герметично соединенный с аттритором резервуар, из которого под действием вибрации загружают в капсульную оснастку. Капсульную оснастку с порошком помещают в вакуумную камеру и герметично заваривают с применением электронно-лучевой сварки, после этого помещают в газостат и проводят горячее изостатическое прессование, оснастку вынимают из газостата и механическим путем снимают элементы оснастки с получением прутковой заготовки. Обеспечивается повышение пластичности, кратковременная прочность и однородность химического состава. 6 з.п. ф-лы, 1 табл.

Изобретение относится к летательным аппаратам с тепловой абляционной защитой. Наконечник гиперзвукового летательного аппарата выполнен из углерод-углеродного композиционного материала. Диаметр волокна (d), формирующего структурную ячейку углерод-углеродного композиционного материала в центральной части наконечника, имеет меньшее значение по отношению к диаметру волокна (D), формирующего структурную ячейку углерод-углеродного композиционного материала основной части наконечника. Свойства композиционного материала выбраны в зависимости от диаметра структурной ячейки, диаметра волокон, скорости уноса материала и давления торможения. Отношение радиуса центральной части к радиусу сферического затупления наконечника соотносится от 0,04 до 0,06. Изобретение направлено на повышение стабильности аэродинамических характеристик гиперзвукового летательного аппарата. 3 з.п. ф-лы, 5 ил.

Группа изобретений относится к получению герметичных капсул с металлическим порошком для горячего изостатического прессования (ГИП) изделий. Готовят транспортные бункеры с порошком и стыкуют их с вакуумированными загрузочным узлом и узлом нагрева порошка. Открывают приемные затворы транспортных бункеров и вакуумируют. Пересыпают порошок в загрузочный узел. Подают в загрузочный узел инертный газ. Нагревают заполненный загрузочный узел и одновременно при вакуумировании нагревают капсулу. Создают в бункерах вакуум и выравнивают его во всем объеме установки, затем осуществляют подачу порошка с одновременным его виброуплотнением и дегазацией в нагретую капсулу. Прекращают виброуплотнение и нагревание капсулы. Производят механическое сжатие засыпной горловины над уровнем засыпанных в капсулу гранул и создают герметичное сварное соединение в месте контакта механизма зажима и герметизации горловины капсулы на участке сжатой засыпной горловины. Обеспечивается повышение качества и прочности ГИП изделий. 2 н. и 5 з.п. ф-лы, 1 ил.

Изобретение относится к области машиностроения, в частности к камерам сгорания прямоточных воздушно-реактивных двигателей. Камера сгорания прямоточного воздушно-реактивного двигателя из композиционных материалов состоит из наружной силовой и внутренней стенки, оформляющей газовый канал, оболочек для конструктивных форм камер, приближенных к телам вращения, или комплекта наружных и внутренних стенок, оформляющих наружный облик камеры и внутренний газовый канал, при других, например, призматических конструктивных формах камер. Пространство между наружной и внутренней оболочками или наружными и внутренними стенками заполнено пористой теплоизоляцией с закреплением высокотемпературным клеем на одной из оболочек или соответствующих им стенках или без него. Наружная оболочка или комплект соответствующих ей стенок выполнена из углерод-углеродного композиционного материала с антиокислительным и герметизирующим покрытием с внутренней стороны, а внутренняя оболочка выполнена из эрозионностойкого материала с регулируемой газопроницаемостью, например, перфорацией. Изобретение направлено на повышение тепло- и эрозионной стойкости камеры сгорания и разгрузка ее внутренней оболочки от давления газа. 1 ил.

Изобретение относится к производству изделий из высокотемпературных композиционных материалов и может быть применено в авиационной, ракетно-космической и железнодорожной промышленности, в двигателестроении и энергетическом машиностроении. Для изготовления пористого каркаса-основы штапельный полимерный материал с высоким коксовым остатком в виде нетканых холстов подвергают иглопробиванию с целью его разволокнения. Наносят на разволокненные холсты связующее, а затем производят их прессование при температуре 120-200°С и давлении 3-5 МПа в течение 10-12 ч и остужают перед карбонизацией до комнатной температуры. Карбонизацию проводят путем обжига при температуре 1000°С в течение 1-2 ч с одновременным прессованием давлением 0,1-0,15 МПа. Используют связующее, плавящееся при температуре прессования, затвердевающее при комнатной температуре и полностью разлагающееся при карбонизации. Обеспечивается повышение качества каркаса-основы композиционного материала за счет придания ему поверхностной шероховатости не выше металлической. 1 з.п. ф-лы, 2 ил.
Изобретение относится к области электрохимической обработки металлов и может быть использовано при изготовлении катализаторов химических реакций. Способ обработки проволоки для катализатора, выполненной из металла платиновой группы, осуществляют переменным током в водном растворе минеральной кислоты при комнатной температуре в диапазоне плотностей тока 0,4-5,0 А/см2 и частоте переменного тока 2-50 Гц. Технический результат: повышение удельной поверхности проволоки из металлов платиновой группы за счет проведения на ее поверхности реакций окисления и восстановления.

Изобретение относится к области металлургии, а именно к производству жаростойких порошковых сплавов на основе интерметаллида NiAl, и может быть использовано в авиационной, космической и энергетической отраслях для изготовления теплонагруженных деталей, работающих в условиях высоких температур и испытывающих относительно невысокие механические нагрузки. Гранулируемый сплав на основе интерметаллида NiAl содержит, мас. %: алюминий 24,5-29,9; кобальт 5,27-6,35; хром 5,98-7,3; гафний 1,0-1,2; бор 0,03-0,04; никель - остальное. Сплав характеризуется высокой жаропрочностью и пластичностью. 4 табл., 3 пр.
Изобретение относится к электрохимическому получению порошкового иридия с высокой удельной поверхностью, который может быть использован в устройствах катализа горения многокомпонентных топлив при температурах до 2100°С без изменения химического состава и потери формы. Электролиз ведут в электрохимической ячейке, образованной катодом в виде контейнера с хлоридным расплавом KCl-NaCl и анодом в виде образца из иридия, размещенного коаксиально контейнеру, при соотношении плотностей катодного и анодного тока от 0,05 до 10. Обеспечивается получение порошка иридия с удельной поверхностью более 5 м2/г. 3 пр.

Изобретение относится к области авиации, ракетостроения и космонавтики, в частности к лейнерам, которые используются в баллонах высокого давления. Способ изготовления тонкостенного бесшовного лейнера для композитных баков из титановых сплавов включает засыпку гранул из высокопрочного титанового сплава в металлическую капсулу. После заполнения гранулами капсулы процесс виброуплотнения и нагревания прекращают, капсулу с находящимися в ней гранулами заваривают электронным лучом и извлекают на воздух, а затем проверяют на герметичность. После завершения проверки вакуумированные гранулы в капсуле подвергают горячему изостатическому прессованию, по окончании которого полученную в результате компактированную капсулу заготовки лейнера опускают в емкость с раствором кислот для растворения внешней и внутренней оболочек, по окончании которого тонкостенный бесшовный лейнер из высокопрочного титанового сплава извлекают из раствора кислот и проверяют на соответствие геометрическим параметрам. Тонкостенный бесшовный лейнер для композитных баков из титановых сплавов содержит цилиндрическую обечайку, два днища, которые расположены на одной оси и сопряжены так, что цилиндрическая обечайка расположена между двумя днищами лейнера. Два фланца, каждый из которых сопряжен с одним из днищ лейнера. При этом на центральной оси каждого фланца имеется отверстие, цилиндрическая обечайка, днища и фланцы сопряжены в единую, монолитную и равнопрочную конструкцию без сварных швов и соединений. Техническим результатом является повышение надежности, уменьшение массовых характеристик, увеличение прочности и срока эксплуатации при повышении сложности конфигурации и минимальной механической обработке лейнера. 2 н. и 6 з.п. ф-лы, 1 ил.

Изобретение относится к ракетно-космической технике и может быть использовано в ферменных конструкциях. Силовой элемент ферменной конструкции содержит один узел пересечения, два полых соединенных и сопряженных между собой в узле пересечения цилиндрических диагональных стержня, узел пересечения в виде полого и замкнутого по торцам центрального цилиндрического стержня с отверстием. Одним торцом диагональные цилиндрические стержни сопряжены с центральным цилиндрическим стержнем бесшовным образованием из одного материала. Центральные оси диагональных и центрального цилиндрического стержня находятся в одной плоскости, центральная ось диагональных цилиндрических стержней расположена под одним углом к центральной оси узла центрального полого цилиндрического стержня. Капсула для изготовления силового элемента ферменной конструкции содержит внутреннюю оболочку из двух внутренних цилиндрических труб диагональных стержней, внутреннего стакана центрального стержня, двух ограничителей, наружную оболочку из двух внешних труб диагональных стержней с межстаканным кольцом, двух межтрубных колец, одного ограничителя, внешнего дна центрального стержня с одной засыпной горловиной с пробкой. Изобретение позволяет уменьшить массу конструкции и увеличить однородность и прочность конструкции. 2 н. и 4 з.п. ф-лы, 2 ил.

Изобретение относится к области производства нетканых материалов, преимущественно к производству нетканых материалов методом гидроперепутывания волокон высоконапорными струями жидкости, например воды. Технической задачей изобретения является расширение арсенала средств и функциональных возможностей при минимальных используемых средствах. Техническая задача решается тем, что установка для получения нетканых материалов содержит станину, два накопителя материала, перфорированный гибкий ленточный конвейер и два накопителя ленты конвейера, привод конвейера, сопловое устройство со средствами подачи жидкости высокого давления, устройство крепления соплового устройства, размещенное на станине с возможностью воздействия на волокнистый материал, размещаемый на перфорированном гибком ленточном конвейере, средство удаления избытка жидкости с поддоном, отделитель материала от перфорированной ленты и опорный валик, при этом накопители материала выполнены с возможностью поворота и переворота накопленного материала, перфорированный гибкий ленточный конвейер, его привод и два накопителя ленты конвейера выполнены с возможностью реверсивного движения, устройство крепления соплового устройства выполнено с возможностью пространственного перемещения и движения соплового устройства, а отделитель материала от сетки и опорный валик - с возможностью отделения материала от перфорированной ленты конвейера при любом направлении ее движения после прохождения соплового устройства. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области металлургии, в частности к способам получения отливок сплавов на основе гамма алюминида титана, и может быть использовано при получении изделий ответственного назначения, работающих при температурах до 700°C, в частности лопаток газотурбинных двигателей. Способ получения литого сплава на основе гамма алюминида титана для фасонных отливок включает получение смеси порошков, формирование из нее брикета и проведение самораспространяющегося высокотемпературного синтеза. Получают смесь порошков из чистых металлов, содержащую титан, алюминий, ниобий и молибден в количестве, мол.%: алюминий 40-44, ниобий 3-5, молибден 0,6-1,4, титан - остальное. Брикет формируют с относительной плотностью 50-85 % и подвергают его термовакуумной обработке при температуре 550-650°C в течение 10-40 мин, скорости нагрева 5-40°C/мин и давлении 10-1-10-3 Па, а СВС проводят при начальной температуре 560-650°C. Получают отливки заданной конфигурации с высоким уровнем механических свойств при повышенных температурах. 2 ил., 2 табл., 2 пр.

Изобретение относится к области теплотехники и может быть использовано при изготовлении теплообменников из композиционных материалов

Изобретение относится к области энергетического машиностроения, а именно к обработке заготовок деталей, выполненных из жаропрочных никелевых сплавов, перед их соединением в паяно-сварную конструкцию, работающую в интервале температур от -253°C до +900°С

Изобретение относится к области машиностроения и может быть использовано для изготовления армированных труб

Изобретение относится к изготовлению топливных баков для ракетных и космических аппаратов, в частности к устройствам, выполненным в виде одноразовых пластически деформируемых капсул, которые предназначены для изготовления или формирования корпуса топливного бака ракетной и космической техники из гранул фракционного состава высокопрочного титанового сплава, полученных методом гранульной металлургии, с использованием горячего изостатического прессования

Изобретение относится к корпусам топливных баков для изделий ракетной и космической техники, в частности к устройствам, корпус которых является пневмогидравлической емкостью с эластичной разделительной мембраной для хранения жидкости с возможностью ее вытеснения

Изобретение относится к металлургической промышленности, к машиностроению, а именно к соединению выполненных из разнородных или однородных по материалу деталей, и может найти применение в производстве сборочных единиц изделия в космической, авиационной технике, в приборостроении, в транспорте, электронике и других областях
Изобретение относится к области металлургии, а именно к производству жаропрочных никелевых сплавов на основе интерметаллида NiAl, используемых для изготовления теплонагруженных деталей газотурбинных двигателей
Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе интерметаллида Ni3Al и изделиям, получаемым методами гранульной металлургии, преимущественно рабочих и сопловых лопаток высокотемпературных газотурбинных двигателей авиационно-космического, транспортного и энергетического назначения

Изобретение относится к области космического материаловедения и оптической техники и может быть использовано в системе пассивного терморегулирования космических аппаратов для изготовления покрытия холодной сушки класса «солнечные отражатели», которые наносят на внешние поверхности космических аппаратов

 


Наверх