Патенты автора Яновский Леонид Самойлович (RU)

Изобретение относится к области исследования электростатических полей в различных средах и условиях, в частности в любых жидких углеводородных горючих (охладителях). На основе результатов экспериментальных исследований разработан новый беззондовый способ определения границы начала зоны насыщения электростатическими полями в жидких углеводородных горючих (охладителях), находящихся в замкнутом объеме экспериментальной бомбы с окнами визуализации, в условиях естественной конвекции, при различных температурах, при докритических, критических и сверхкритических давлениях, при подаче в постоянном режиме высоковольтных электростатических напряжений на отдающую иглу в системе электродов типа «игла - игла», находящихся внутри экспериментальной бомбы, без применения каких-либо датчиков или зондов путем создания эталонной экспериментальной базы данных по визуализации электрического ветра при помощи оптической установки Теплера, необходимых для сравнения с текущими значениями и быстрого определения в земных и космических условиях величин подаваемых высоковольтных электростатических напряжений, которые являются граничными, т.е. находятся на границе начала зоны насыщения электростатическими полями. В ходе визуализации электрического ветра при конкретных термодинамических условиях жидкого углеводородного горючего (охладителя) по давлению и температуре, при конкретных межэлектродных расстояниях соосных рабочих игл и конкретных подаваемых в постоянном режиме высоковольтных электростатических напряжениях производится замер высоты образующегося гидравлического факела. Реальные размеры гидравлического факела, которые образуются внутри экспериментальной бомбы, определяются путем масштабирования, за основной (базовый) размер при масштабировании берется известный реальный диаметр соосных рабочих игл, измеренный до начала работы в ходе сборки рабочего участка. С реальным значением постоянной наибольшей высоты гидравлического факела Нр, полученной при конкретном межэлектродном расстоянии, необходимо войти в экспериментальный эталонный график U=f(Hp), созданный ранее при том же конкретном межэлектродном расстоянии, и определить искомое значение реального подаваемого на отдающую иглу высоковольтного электростатического напряжения U, при котором начинается граница насыщения. Для ускорения процесса нахождения граничных напряжений возможно с реальным значением межэлектродного расстояния hp войти в обобщенный экспериментальный эталонный график hp=f(U) и определить искомое значение подаваемого на отдающую иглу высоковольтного электростатического напряжения U, при котором начинается граница насыщения. Технический результат - изобретение будет способствовать повышению качества проектирования, расчета и создания новой отечественной техники двойного назначения, наземного, воздушного, аэрокосмического и космического базирования одно- и многоразового использования на жидких углеводородных горючих и охладителях, повышенных характеристик по ресурсу. 6 з.п. ф-лы, 3 ил.

Изобретение относится к области исследования электростатических полей в жидких углеводородных горючих (охладителях) и любых их смесях и предназначено для определения величины подаваемого высоковольтного электростатического напряжения на отдающую рабочую соосную иглу в системе электродов типа «игла - игла». Сущность: определение величины подаваемого высоковольтного электростатического напряжения на отдающую рабочую соосную иглу в системе электродов типа «игла - игла» с диаметрами 1,2-3,0 мм и углами заточки острия 15-85° осуществляется в замкнутом объеме экспериментальной бомбы с окнами визуализации и использованием оптической установки Теплера в условиях естественной конвекции при докритических, критических и сверхкритических давлениях и температурах в пределах (273-333) К. При этом визуализируется гидродинамическое воздействие электрического ветра на экране путем замера диаметра шарообразных гидравлических завихрений гидравлического факела, образованного гидродинамическим воздействием электрического ветра, с дальнейшим масштабированием. Замер диаметра гидравлических завихрений осуществляется на экране в ходе работы экспериментальной установки или на теплерограммах - фотографиях после работы экспериментальной установки. За основу масштабирования принимается известный диаметр соосных рабочих игл, измеренный до начала работы экспериментальной установки. Величину искомого напряжения определяют по экспериментальному эталонному графику зависимости напряжения от диаметра шарообразных гидравлических завихрений. Технический результат: создание беззондового способа определения величины подаваемого высоковольтного электростатического напряжения на отдающую иглу в системе электродов «игла - игла» в замкнутом объеме с жидким углеводородным горючим (охладителем) или со смесью жидких углеводородных горючих (охладителей) в условиях естественной конвекции при докритических, критических и сверхкритических давлениях для быстрого определения величины подаваемого высоковольтного электростатического напряжения в земных и космических условиях. 8 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к ракетной технике, в частности к способам работы детонационных ракетных двигателей. Способ заключается в том, что твердое горючее и твердый окислитель размещают в отдельных газогенераторах, осуществляют нагрев и газификацию твердого горючего и твердого окислителя при помощи соответствующих дополнительных зарядов твердого топлива с низкой скоростью горения. Затем при помощи соответствующих коллекторных устройств подают горючее и окислитель в газообразном состоянии в кольцевую камеру сгорания и смешивают их с образованием ракетного топлива, которое воспламеняют и сжигают с образованием по меньшей мере одной детонационной волны, а продукты сгорания удаляют. При этом время заполнения кольцевой камеры сгорания ракетным топливом принимают меньшим, чем время задержки самовоспламенения образованного ракетного топлива, и определяют из заданного соотношения. Технический результат изобретения заключается в создании способа работы детонационного ракетного двигателя, характеристики которого обеспечивают повышение эффективной скорости полета. 1 ил.

Изобретение относится к ракетно-космической технике. Способ повышения эффективности воздушных, гиперзвуковых, аэрокосмических и космических летательных аппаратов, одно- и многоразового использования на жидких углеводородных горючих заключается в введении в него фуллеренов марок С60, С70, С84 при их концентрации (0,1-0,5)%. Изобретение обеспечивает повышение эффективности реактивных двигателей и энергоустановок на жидких горючих и охладителях путем введения в них неметаллических добавок, повышая их плотность. 12 з.п. ф-лы, 1 табл.

Изобретение предназначено для исследования кинетики химических реакций, проходящих с изменением количества газообразных соединений, а также определения температурных зависимостей упругостей паров от температуры, энтальпий и энтропий испарения, температур и критических температур исследуемых соединений при давлениях от 0 до 200 атм и температурах от 20 до 1000°С. Предложен способ исследования кинетики химических реакций, проходящих в твердом, жидком или газообразном состояниях с изменением количества газообразных соединений, а также определения температурных зависимостей упругостей паров от температуры, энтальпий и энтропий испарения, температур кипения и критической температуры исследуемых соединений газометрическим методом. Способ заключается в автоматическом фиксировании и обработке зависимостей упругостей паров жидких соединений от температуры, зависимостей давлений газообразных соединений в реакционном сосуде от времени и зависимостей констант скоростей химических реакций, проходящих с выделением газообразных веществ от температуры. Причем, с целью определения давления газообразных соединений, используют стеклянный реакционный сосуд со стеклянной манометрической мембраной и стеклянной трубкой для загрузки исследуемого образца, при этом к трубке припаяна стеклянная стрелка, а у основания мембраны трубка запаяна, а стеклянный реакционный сосуд с трубкой, стеклянной манометрической мембраной и стеклянной стрелкой установлен в металлическую камеру компенсации давления. Технический результат – повышение информативности получаемых данных за счет создания установки и разработки способа исследования кинетики химических реакций, проходящих с изменением количества газообразных соединений, а также определения температурных зависимостей упругостей паров от температуры, энтальпий и энтропий испарения, температур кипения и критических температур исследуемых соединений при давлениях от 0 до 200 атм и температурах от 20 до 1000°С. 2 н.п. ф-лы, 7 ил.

Изобретение относится к рабочим (гидравлическим) жидкостям и может быть использовано в областях техники, требующих применения в гидросистемах рабочих жидкостей с большим диапазоном рабочих температур и обладающих повышенной пожаробезопасностью, в частности, в авиационной технике. Рабочая жидкость для гидравлических систем включает базовую композицию, содержащую полиэтилсилоксановую жидкость с вязкостью 44,0⋅10-6-49,0⋅10-6 м2/с при 20°С и сложный эфир дикарбоновой кислоты Syntolux L-132 с вязкостью 3,2⋅10-6 м2/с при 100°С, а также присадки: 4-метил-2,6-ди-трет-бутилфенол, фенил-α-нафтиламин, трибутилфосфат и высокомолекулярный загуститель Syntolux V-15, являющийся винилалкиловым полимером с вязкостью не менее 1000⋅10-6 м2/с при 100°С. Рабочая жидкость обладает высокой термоокислительной стабильностью, необходимыми трибологическими и вязкостно-температурными характеристиками, повышенной пожаробезопасностью и обеспечивает безопасную работу гидравлических систем летательных аппаратов во всем диапазоне эксплуатационных температур. 2 табл.

Изобретение относится к смазочным композициям для поршневых двигателей, в частности к всесезонным смазочным композициям для авиационных поршневых двигателей, и направлено на улучшение эксплуатационных характеристик смазочной композиции требуемой вязкости при использовании ее для смазки тяжелонагруженных деталей авиационных поршневых двигателей. Техническим результатом, достигаемым в заявленном изобретении, является повышение температуры вспышки и снижение зольности смазочной композиции для поршневых двигателей при сохранении ее высоких вязкостно-температурных, трибологических и термоокислительных свойств. Технический результат достигается за счет того, что смазочная композиция для поршневых двигателей содержит базовый состав и пакет присадок, включающий антиокислительные присадки, диспергирующую присадку на основе сукцинимида, противоизносную присадку и полиметилсилоксан ПМС-200А в качестве антипенной присадки, при этом базовый состав содержит смесь двух полиальфаолефиновых масел (ПАО), одно из которых имеет вязкость 10 мм2/с при 100°С, а другое - 125-145 мм2/с при 100°С, со сложным эфиром Syntolux L-6115 с вязкостью 11,5 мм2/с при 100°С, а пакет присадок в качестве антиокислительных присадок содержит жидкий октилированный, бутилированный дифениламин и 4-метил-2,6-ди-трет-бутилфенол, в качестве диспергирующей присадки содержит сукцинимидную присадку ЛАГ-03, в качестве противоизносной присадки - трикрезилфосфат, и дополнительно содержит сложный эфир двухосновной кислоты Syntolux L-439 с вязкостью 3,9 мм2/с при 100°С в качестве присадки для повышения растворимости пакета присадок в базовом масле и ингибитор коррозии 1,2,3-бензотриазол при следующем соотношении компонентов, масс. %: сукцинимидная присадка ЛАГ-03 3,5-4,5; жидкий октилированный, бутилированный дифениламин 0,8-1,2; 4-метил-2,6-ди-трет-бутилфенол 0,4-0,6; 1,2,3-бензотриазол 0,04-0,06; полиметилсилоксан ПМС-200А 0,001-0,003; сложный эфир двухосновной кислоты Syntolux L-439 3,637-5,659; трикрезилфосфат 1,3-1,7; смесь ПАО 61,9-74,1; сложный эфир Syntolux L-6115 14,7-25,9. 5 ил.

Авиационная силовая установка содержит турбокомпрессорный блок, батарею твердооксидных топливных элементов с выходами для анодного и катодного газов, отдельно расположенный тяговый вентилятор, топливный насос. Турбокомпрессорный блок включает контур низкого давления и контур высокого давления с камерой сгорания, регулятор расхода топлива выполнен с двумя выходами, один из которых связан с камерой сгорания. Выходы для анодного и катодного газов батареи твердооксидных топливных элементов соединены газоводами с входом камеры сгорания. Тяговый вентилятор снабжен электродвигателем, электрически связанным с батареей твердооксидных топливных элементов. Авиационная силовая установка снабжена риформером, связанным с батареей твердооксидных топливных элементов с образованием электрохимического генератора. Контур высокого давления содержит заслонку и дополнительный контур, образованный внутренним вентилятором и электрохимическим генератором. Камера сгорания выполнена в виде низкоэмиссионной камеры сгорания со стабилизатором пламени, подключенным к выходному газоводу анодного газа электрохимического генератора, второй выход регулятора расхода топлива связан с входом риформера электрохимического генератора. Изобретение обеспечивает улучшение экологических показателей авиационной силовой установки на взлетном режиме и повышение ее экономичности на крейсерском режиме. 4 ил.

Изобретение относится к жидким углеродсодержащим топливам, содержащим присадки, применительно к оценке эффективности присадок - промоторов горения топлива в камере сгорания воздушно-реактивного двигателя. Способ заключается в том, что на первом этапе в испарительную камеру сгорания подают эталонное топливо и воздух с заданными температурой и давлением, коэффициент избытка воздуха устанавливают из условия сгорания более 95% топлива, увеличивают расход воздуха и топлива при неизменном коэффициенте избытка воздуха, добиваясь бедного срыва пламени в камере сгорания, и фиксируют значение объемного расхода воздуха, соответствующего режиму срыва пламени, на втором этапе используют топливо с присадкой - промотором горения, которое подают в испарительную камеру сгорания при расходе, равном начальному расходу топлива на первом этапе, воздух подают с коэффициентом избытка воздуха при температуре и давлении, равными выбранным на первом этапе, увеличивают расход воздуха и топлива при неизменном коэффициенте избытка воздуха, добиваясь бедного срыва пламени в камере сгорания, и фиксируют значение объемного расхода воздуха, соответствующего режиму срыва пламени, и оценку эффективности присадки - промотора горения осуществляют по соотношению объемных расходов воздуха, зафиксированных на первом и втором этапах. Достигается повышение точности оценки. 1 з.п. ф-лы, 2 ил.

Изобретение относится к отраслям промышленности, где требуется создание потока с регулируемым массовым расходом газообразного низкотемпературного рабочего тела. Газогенератор содержит центральный полый цилиндр, закрытый с одного торца и открытый в виде суживающегося сопла с другого торца, размещенные в цилиндре локальные газогенерирующие части заряда твердого топлива с разделительными перегородками между ними и систему воспламенения частей заряда. Газогенератор дополнительно содержит цилиндрический корпус с периферийным и центральным зарядами наполнителя, резонансную камеру и две круговые решетки. Цилиндрический корпус снабжен днищем с одной стороны и коническим переходником с патрубком с другой стороны. Резонансная камера выполнена в виде стакана с расположенным в нем поршнем и установлена в центре днища корпуса. Заряды наполнителя установлены в корпусе между входной и выходной круговыми решетками с образованием между ними кольцевого канала, коаксиального полому цилиндру. Полый цилиндр размещен в осевом отверстии центрального заряда наполнителя и обращен соплом по оси в сторону резонансной камеры с образованием промежуточной полости между ними, сообщающейся через кольцевой канал между зарядами наполнителя с патрубком. Изобретение позволяет обеспечить возможность многократного включения газогенератора и регулирования массового расхода газообразного низкотемпературного рабочего тела, а также повысить надежность газогенератора. 4 з.п. ф-лы, 3 ил.

Изобретение относится к области смазочных композиций для трансмиссий летательных аппаратов, в частности для смазки трансмиссий винтов вертолетов. Трансмиссионная смазочная композиция содержит базовый состав на основе полиальфаолефинового масла, включающий сложный эфир двухосновной кислоты, загущающую присадку и пакет присадок, включающий антиокислительные присадки в виде фенил-альфа-нафтиламина и 4-метил-2,6-ди-трет-бутилфенола, серуфосфоросодержащую присадку и антипенную присадку. Композиция в качестве базового состава содержит смесь полиальфаолефинового масла Spectrasyn 10 с вязкостью 10 мм2/с при 100°С со сложным эфиром двухосновной кислоты Syntolux L-439 с вязкостью 3,9 мм2/с при 100°С и загущающей присадкой Syntolux V-7, представляющей собой винилалкиловый полимер с вязкостью от 200 до 5000 мм2/с при 100°С, и, кроме этого, пакет присадок дополнительно содержит метилен-бис-(дибутилдитиокарбамат), серуфосфоросодержащую присадку Кримсон 100М с содержанием серы не менее 16,0% и фосфора не менее 1,2%, а также антипенную кремнийорганическую присадку полидиметилсилоксан ПМС-200А. Смазочная композиция согласно изобретению характеризуется повышенным значением температуры вспышки и решает проблему улучшения эксплуатационных характеристик смазочной композиции при использовании ее в тяжелонагруженных трансмиссиях летательных аппаратов во всем диапазоне эксплуатационных температур. 2 табл.

Изобретение относится к энергетике. Газотурбинная установка (ГТУ) содержит компрессор, камеру сгорания, турбину, потребитель энергии, магистраль топливоподачи и котел утилизатор, снабженный контурами горячего и холодного теплоносителей. Контур горячего теплоносителя выполнен в виде выпускного канала продуктов сгорания из турбины в атмосферу. Контур холодного теплоносителя выполнен в виде канала противоточного выпускному каналу с подключением на входе противоточного канала коллектора подачи топлива и коллектора подачи воды, а на выходе - коллектора подачи пара смеси воды и топлива в камеру сгорания. Выпускной канал продуктов сгорания в атмосферу на выходе из турбины снабжен последовательно установленными котлом-утилизатором, радиатором и конденсатором воды. Противоточный канал контура холодного теплоносителя и коллектор подачи продуктов конверсии топливо-водяной смеси в синтез-газ сформированы в виде спиральных трубчатых каналов, расположенных последовательно внутри вдоль стенки выпускного канала котла утилизатора и вдоль стенки жаровой трубы камеры сгорания. В способе функционирования установки в камеру сгорания ГТУ в качестве топлива подаются продукты конверсии топливо-водяной смеси в водородосодержащий синтез-газ. Изобретение обеспечивает экономию топлива при сжигании и независимость работы установки от посторонних источников воды, снижает вредные выбросы в атмосферу и позволяет использовать для ГТУ отработавшие свой ресурс авиационные газотурбинные двигатели. 2 н. и 3 з.п. ф-лы, 1 ил.

Изобретение относится к топливной композиции авиационного неэтилированного бензина, которая в качестве изомерных углеводородов содержит технический изооктан, изопентан или изомеризат С6 или их смесь; в качестве ароматических углеводородов содержит толуол или фракцию бензина риформинга НК-180°C или их смесь, а также дополнительно содержит монометиланилин (ММА) и метил-трет-бутиловый эфир (МТБЭ) при следующем соотношении компонентов, мас.%: технический изооктан 30-70 изопентан или изомеризат C6 или их смесь 10-25 толуол или фракция бензина риформинга НК-180°C   или их смесь 8-40 ММА 0,5-2,0 МТБЭ до 15 Топливная композиция может содержать присадки, выбранные из группы: антикоррозионные, антистатические, противообледенительные и другие, разрешенные стандартом на авиационный бензин. Топливная композиция авиационного неэтилированного бензина обладает необходимой детонационной стойкостью, сниженным содержанием ароматических углеводородов, высокой теплотой сгорания и низким концом кипения не более 180°C. 1 з.п. ф-лы, 2 табл.

Изобретение относится к авиационному двигателестроению и предназначено для прямоточных воздушно-реактивных двигателей. Прямоточный воздушно-реактивный двигатель на твердом горючем содержит воздухозаборник, газогенератор с зарядом твердого горючего в отдельном корпусе, камеру дожигания и сопло. Функционирование двигателя в режиме сверхзвукового горения включает неполное торможение воздушного потока в воздухозаборнике, газификацию твердого горючего в газогенераторе, разложение продуктов газификации в охлаждающем тракте, смешение воздуха и продуктов разложения, воспламенение и сжигание смеси в камере дожигания, расширение продуктов сгорания в сопле. Также представлен способ функционирования прямоточного воздушно-реактивного двигателя на твердом горючем. Изобретение позволяет улучшить массогабаритные характеристики, повысить энергоемкость при быстром и полном сгорании горючего, а также обеспечить надежную защиту и охлаждение стенок камеры дожигания. 2 н. и 16 з. п. ф-лы, 4 ил.

Изобретение относится к устройствам для получения газообразного и сжиженного топлив из залежей гидратов. Технический результат заключается в получении свободного сжатого газа высокого давления и сжиженного газа, обеспечении работы установки за счет собственных энергетических ресурсов, обеспечении постоянства режима получения газа по давлению и расходу. Установка для получения газа из гидрата газа включает устройство для получения газа и узел загрузки гидрата газа. Устройство содержит реактор, емкость с водой, нагреватель и сепаратор. Реактор снабжен в верхней части трубопроводом отвода сжатого газа потребителям через сепаратор. Емкость соединена с реактором трубопроводом подвода воды с насосом и трубопроводом отвода воды из реактора в его нижней части. Сепаратор снабжен трубопроводом отвода воды и непрореагировавшего гидрата. Устройство дополнительно содержит систему охлаждения внутренних стенок реактора, вентилятор, ресивер, газовый фильтр, потребитель сжатого газа, теплообменник с каналами горячего и холодного теплоносителей, турбодетандер с электрогенератором, дроссель, жидкостный фильтр, потребитель сжиженного газа, кран суфлирования и предохранительный клапан полости реактора, запорно-регулирующие краны и систему охлаждения газа перед турбодетандером. 8 з.п. ф-лы, 2 ил.

Изобретение относится к авиационной технике, в частности к авиационной силовой установке на базе топливных элементов
Изобретение относится к смазочным высокотемпературным синтетическим маслам для силовых турбин в авиации, в частности для теплонапряженных газотурбинных двигателей сверхзвуковой авиации

Изобретение относится к испытательной технике для оценки качества смазочных масел, преимущественно авиационных моторных масел, в частности к оценке их коррозионной активности на конструкционные и уплотнительные материалы, и может быть использовано в химической и авиационной промышленности для определения уровня противокоррозионных свойств моторных масел и их дифференциации при допуске к производству и применению в технике

Изобретение относится к области авиационного, аэрокосмического и космического двигателестроения, к созданию газотурбинных двигателей, работающих на жидких углеводородных горючих и охладителях

Изобретение относится к смазочным композициям для силовых установок авиационной техники, а именно для ГТД самолетов, главных редукторов тяжелонагруженных агрегатов трансмиссий маслосистемы турбокомпрессора двигателя вертолетов, обладающим улучшенными антикоррозионными и смазывающими свойствами, в частности противоизносными

Изобретение относится к получению высокотемпературного масла на основе фторсодержащего полиорганосилоксана, пригодного для аэрокосмической техники

Изобретение относится к области авиации, более конкретно к вспомогательной силовой установке для самолета
Изобретение относится к смазочным композициям для силовых установок авиационной техники, а именно для ГТД самолетов главных редукторов и тяжелонагруженных агрегатов трансмиссий и маслосистемы турбокомпрессора двигателя вертолетов

Изобретение относится к способу получения смеси гексацикло[8.4.0.0 2,17.03,14.04,8.09,13]тетрадецена-5 и гексацикло[6.6.0.02,6.05,14.07,12 .09,13]тетрадецена-3 изомеризацией бинора-S при повышенной температуре на платиновом катализатореPt/SiO 2, характеризующемуся тем, что реакцию проводят на платиновом катализаторе, полученном методом пропитки шарикового широкопористого силикагеля диаметром 2,5-3,5 мм водным раствором платинохлористоводородной кислоты Н2РtCl6 до содержания платины 0,25-0,5%, бинор-S подают в реактор в виде 20-40%-ного раствора в бензоле или толуоле при объемной скорости 50-60 мл/ч при температуре 240-250°С

Изобретение относится к машиностроению, а именно к интегральным ракетно-прямоточным двигателям
Изобретение относится к составам смазочных масел, в частности к смазочному маслу для редукторов и тяжелонагруженных агрегатов трансмиссий летательной техники
Изобретение относится к области нефтехимии и авиационной технике, конкретно к моторно-редукторному маслу, предназначенному для работы в теплонапряженных газотурбинных (турбовинтовых) двигателях и высоконагруженных редукторах самолетов и вертолетов

 


Наверх