Патенты автора Титова Тамила Семеновна (RU)

Изобретение относится к спортивному снаряжению, а более конкретно, к гарпунам ружей для подводной охоты. Гарпун ружья для подводной охоты содержит цилиндрический корпус с хвостовиком и наконечником, причем в передней и задней части корпуса выполнены кольцевые канавки. Технический результат - улучшение массогабаритных показателей гарпуна ружья для подводной охоты за счет стабилизации положения движущегося гарпуна для подводной охоты с помощью вихрей воды. 2 ил.

Изобретение относится к льдотехнике, в частности к устройству, используемому в подводных взрывных работах с целью освобождения водной поверхности от образующихся в зимне-весеннее время ледяных заторов и зажоров. Перед погружением в воду конденсаторная батарея заряжается от источника питания. Погруженное в воду устройство для вскрытия ледяного покрова фиксируется подо льдом с помощью поплавковой камеры и узла сцепления. Вода через перфорированную стенку заполняет верхний отсек. Затем срабатывает система подрыва и инициирует подрыв капсюля. Ударная волна и продукты взрыва капсюля «прокалывают» вторую металлическую пластину и диэлектрическую пластину, тем самым замыкая первую и вторую пластины. Таким образом, срабатывает управляемый коммутатор. Конденсаторная батарея разряжается на искровой промежуток между первым и вторым электродами и между ними возникает электрический разряд в воде, заполнившей верхний отсек. Образуются ударная волна и гидродинамические течения, вызванные пульсацией парогазовой полости, которые через практически несжимаемую воду передаются на лед, вызывают разрушение последнего. Изобретение позволяет повысить уровень безопасности при эксплуатации устройства. 1 ил.

Изобретение относится к трубопроводному транспорту. Внутри внешнего жесткого трубопровода расположены контейнеры (5), перемещаемые линейными электродвигателями. Статоры линейных электродвигателей расположены на внутренней поверхности трубопровода. При скоростном движении контейнера (5) его головная часть подобно поршню нагнетает давление внутри внешнего цилиндрического жесткого трубопровода (1). Воздух из внешнего цилиндрического жесткого трубопровода (1) по патрубку (8) отсасывается в дополнительный трубопровод (7) и через перепускной клапан (10) по патрубку (9) частично возвращается внутрь внешнего цилиндрического жесткого трубопровода (1), в результате чего происходит компенсация разрежения воздуха за задней частью контейнера (5). Технический результат - повышение скорости движения контейнеров. 1 ил.

Устройство для посадки самолета на корабль содержит тормозные устройства в виде гака и аэрофинишера с тормозом в виде линейного магнитопровода, расположенного вдоль посадочного участка палубы. В поперечных пазах магнитопровода уложена трехфазная обмотка, соединенная с источником электропитания. Гак содержит штангу и башмак, закрепленный на конце гака с помощью шарнира. Башмак выполнен двухслойным, нижний слой которого выполнен из немагнитного электропроводящего металла, а верхний – из ферромагнитного материала. Обеспечивается надежность посадки самолета на корабль. 3 ил.

Изобретение относится к транспорту, а более конкретно к трубопроводному транспорту. Изобретение содержит жесткий цилиндрический трубопровод и герметичные контейнеры, перемещаемые линейными двигателями. После загрузки контейнеров (3) запитываются обмотки и между полюсами и ферромагнитным корпусом контейнеров (3) возникают силы притяжения, результирующая этих сил осуществляет бесконтактное удержание контейнеров (3) внутри цилиндрического жесткого трубопровода (1). Включаются линейные электродвигатели, и контейнеры (3) располагаются таким образом, что место присоединения подводящего штуцера (10) с цилиндрическим жестким трубопроводом (1) находится между соседними контейнерами (3). Включаются тормоза этих контейнеров (3), и с помощью нагнетательного компрессора (13) полость между соседними контейнерами (3) заполняется газом. Затем тормоза отключаются и под действием линейных электродвигателей контейнеры (3) начинают движение. В конце прямолинейного участка (5) контейнеры (3) останавливаются в положении, при котором отводящий штуцер (16) находится между соседними контейнерами (3). Включается отсасывающий насос (19), и газ поступает к потребителю, а грузы (4) из контейнеров (3) через шлюзы разгружаются на станции. Технический результат - расширение функциональных возможностей трубопроводного транспорта за счет дополнительной функциональной возможности транспортировки не только грузов, но и газа, закачиваемого в трубопровод. 3 ил.

Изобретение относится к машиностроению, а более конкретно, к двигателям внутреннего сгорания. Благодаря стандартной конструкции коленчатого вала (6), имеющего противовесы (30), при его вращении постоянно изменяется расстояние от поверхности противовеса (30) до обмотки переменного тока (31), поэтому магнитное сопротивление также изменяется по периодическому закону. Величина магнитного потока возбуждения, проходящего через противовес (30) и доходящего до обмотки переменного тока (31), изменяется по периодическому закону. Изменяется величина ЭДС, индуцированной магнитным потоком возбуждения в обмотке переменного тока (31). Переменный ток, обусловленный данной ЭДС, поступает в нагрузку. Технический результат - расширение функционального диапазона двигателя внутреннего сгорания. 4 ил.

Изобретение относится к области судостроения и касается эксплуатации батискафа в ледовых условиях. Предложен способ разрушения ледяного покрова для всплытия батискафа, в котором производят всплытие батискафа до упора рубки в лед, выдвигают из корпуса штанги с электродами до упора их в лед, заполняют штанги забортной водой и нагревают их электронагревательными элементами, расположенными внутри полой боковой стенки штанги, после растопления в толще льда щелей на расчетную глубину заряжают емкостной накопитель, установленный внутри корпуса батискафа, а затем разряжают емкостной накопитель, инициируя электрический разряд в искровом промежутке между внутренней поверхностью торцевой части штанги и концом электрода, после чего возвращают штанги с электродами в исходное положение, увеличивают положительную плавучесть до расчетной величины, взламывая корпусом батискафа ослабленный ледяной покров, и выводят рубку батискафа в надводное положение. Технический результат заключается в уменьшении механического воздействия взламываемого льда на корпус, что повышает уровень безопасности при всплытии батискафа. 3 ил.

Изобретение относится к области строительства, в частности к водосточным системам зданий. Технический результат изобретения заключается в повышении эффективности работы водосточной системы. Вода с крыши улавливается водоприемной воронкой и по пластиковому рукаву секций попадает в электрогенерирующий блок, в котором она воздействует на напорные лопасти. В результате, полый цилиндр, несущий цилиндрическую периодическую структуру из полос радиально намагниченного винила чередующейся полярности, начинает вращаться. Магнитное поле, созданное полосами, пересекает проводники первичной электрической обмотки, и в последней индуцируется электродвижущая сила. В результате ее действия по цепи, состоящей из первичной обмотки и электрического нагревателя, начинает протекать электрический ток. Под действием тепла, генерируемого электрическим нагревателем, происходит нагрев секции и пластикового рукава и образование наледи внутри последнего значительно затрудняется. 2 ил.

Изобретение относится к гидроэнергетике, а именно к использованию энергии прибойного потока у берегов морей, океанов и крупных водоемов путем ее преобразования в электроэнергию. Под действием прямого прибойного потока внешний цилиндрический ротор (11) вращается. Собачки находятся в зацеплении с зубьями храповых колес (12), вращающий момент передается на внутренний цилиндрический ротор (10). Через вал (9) и механический редуктор (7) вращающий момент передается на маховик (5), вертикальный вал (4) и электрогенератор (3), который вырабатывает электрический ток. Во время действия обратного прибойного потока собачки выходят из зацепления с зубцами и вращающий момент на внутренний цилиндрический ротор (10) не передается, и последний продолжает вращаться по инерции благодаря энергии, запасенной маховиком (5). Изобретение направлено на обеспечение высокой эффективности работы прибойной гидроэлектростанции. 2 ил.

Изобретение относится к средствам механизации работ на сортировочных горках железнодорожных станций, а именно к замедлителю вагонному электромагнитному. При входе колеса (16) в зону действия замедлителя вагонного электромагнитного срабатывает датчик движения 9 и с его первого и второго выходов (8) и (10) поступают сигналы на входы (7) и (11), которые запускают источник электропитания (6) и дополнительный источник питания (12). Последний запитывает обмотку подмагничивающего поля (14), которая создает постоянный по направлению магнитный поток, который проходит по колесу (16) и намагничивает последнее. Источник электропитания (6) запитывает электрические обмотки (3), которые создают бегущее магнитное поле, причем его направление противоположно направлению движения вагона. Взаимодействие бегущего магнитного поля электрических обмоток (3) с намагниченным колесом (16) создает силу торможения колес (16). Использование сил, вызванных взаимодействием бегущего магнитного поля электрических обмоток (3) с намагниченным колесом (16), позволяет исключить механический контакт при замедлении колеса (16) с неподвижными частями замедлителя, что в результате приводит к увеличению срока службы замедлителя вагонного электромагнитного. 2 ил.

Изобретение относится к области железнодорожного транспорта, а более конкретно к устройствам для размагничивания рельсовых изолирующих стыков. Источник трехфазного переменного напряжения (9) запитывает трехфазным током распределенную трехфазную обмотку (8), которая создает бегущее магнитное поле, которое замыкается через сердечник-индуктор (5), рельсы (1) и стык (2). Это поле размагничивает изолирующий стык (2) и наводит вихревые токи в рельсах (1). Взаимодействие данных вихревых токов с бегущим магнитным полем приводит к возникновению продольной электромагнитной силы, действующей на сердечник-индуктор (5), под действием которой тележка (3) приходит в движение, опираясь на колеса (4). Так как устройство для размагничивания рельсового изолирующего стыка находится в районе изолирующего стыка (2) только на время размагничивания, на состояние устройства мало влияют условия среды, окружающей изолирующий стык (2). В результате повышается надежность работы устройства. 2 ил.

Изобретение относится к области железнодорожного транспорта, в частности к аэродинамическим тормозным системам высокоскоростных подвижных составов. Аэродинамический тормоз содержит аэродинамический обтекатель, установленный на лобовой части кузова на оси с возможностью углового поворота относительно встречного воздушного потока посредством силовых элементов. В обшивке нижней части лобовой части кузова под аэродинамическим обтекателем выполнено отверстие, соединяющееся трубопроводом с входом воздушной турбины, расположенной на одном валу через редуктор с электрическим генератором. Достигается возможность использования энергии встречного воздушного потока для получения электрической энергии. 1 ил.

Изобретение относится к средствам индивидуальной защиты, а именно к электрошокерам. Электрошокер содержит корпус, активирующую кнопку. Внутри корпуса жестко закреплены источник высокого импульсного напряжения и дополнительный источник высокого импульсного напряжения. Источник высокого импульсного напряжения снабжен зарядным устройством и электрической батареей. Дополнительный источник высокого импульсного напряжения через активирующую кнопку соединен с цилиндрической электрической катушкой. Во внутреннем окне электрической катушки расположен ферромагнитный сердечник, на торцевой поверхности которого жестко закреплены два цилиндрических бойка, находящихся в механическом контакте с торцами рабочих электродов. Активирующая кнопка соединена с помощью механических тяг со спусковым механизмом. Спусковой механизм электрически соединен с рабочими электродами, которые соединены с выводами источника высокого импульсного напряжения. Между активирующей кнопкой и источником высокого импульсного напряжения включен блок задержки. Технический результат заключается в повышении надежности электрошокера. 2 ил.

Изобретение относится к области автомобильного транспорта, а именно к тормозным механизмам с подвижными колодками. На внешней стороне суппорта дискового тормоза жестко закреплен дуговой тепловой коллектор, сверху которого жестко закреплена электроизоляционная накладка. Снаружи электроизоляционной накладки расположена внутренняя прокладка, боковая стенка которой представляет собой периодическую систему из чередующихся электропроводящих и электроизоляционных участков. На каждом электропроводящем участке с помощью коммутирующего припоя горячего спая жестко закреплены своими одними основаниями радиально ориентированные призмы из термоэлектрического материала. Боковая стенка внутренней поверхности внешней прокладки представляет собой периодическую систему из чередующихся электропроводящих и электроизоляционных участков. На внешней прокладке жестко закреплена электроизоляционная накладка, снаружи которой расположен дуговой коллектор охлаждения, на внешней поверхности которого жестко закреплены дуговые ребра охлаждения. Достигается возможность генерирования электрической энергии дисковым тормозом. 1 ил.

Изобретение относится к электротехнике, к устройствам возвратно-поступательного или ударного действия, применяемым для выполнения различных технологических операций. Технический результат состоит в повышении быстродействия. Срабатывает коммутатор (10), и конденсаторная батарея (12) разряжается на пару электродов (8), между которыми инициируется искровой разряд, из-за которого в жидкости, заполняющей резервуар (4), возникает ударная волна, которая приводит в движение жидкость, заполняющую резервуар (4) и направляющую трубу (2). Вместе с жидкостью начинает двигаться боек (3) вправо. При подходе бойка (3) к правому концу направляющей трубы (2) постоянный магнит (15) притягивает ферромагнитный противовес (18), закрепленный на правом плече двуплечего рычага (16), который поворачивается относительно оси вращения (17) по движению часовой стрелки. Появившиеся излишки жидкости в резервуаре (5) вытесняются в расширитель (7). При разряде конденсаторной батареи (13) наблюдается противоположный процесс, в результате которого двуплечий рычаг (16) поворачивается относительно оси вращения (17) против движения часовой стрелки. Таким образом, завершается цикл работы электромагнитного двигателя. Начало нового цикла начинается с заряда конденсаторных батарей (12) и (13). 1 ил.

Изобретение относится к области машиностроение и может быть использовано в компенсирующих муфтах. Компенсирующая муфта предназначена для работы при низких температурах, например, в космосе. Муфта снабжена тригенерационным узлом. При температурах выше температуры плавления легкоплавкого металла (8) и при необходимости передачи вращающего момента с ведущего на ведомый механизм включается абсорбционная холодильная машина (10), которая охлаждает легкоплавкий металл (8), и он переходит в твердое состояние, фиксируя опорные втулки (3) фланцевых полумуфт (2) относительно друг друга. Чтобы прекратить передачу вращающего момента абсорбционная холодильная машина (10) отключается. При низких температурах для отключения ведомого механизма от ведущего включается электронагреватель (11), в результате легкоплавкий металл (8) переходит в жидкое состояние, тем самым исключается жесткое фиксирование фланцевых полумуфт (2) относительно друг друга. При отключении электронагревателя (11) происходит фиксация опорных втулок (3) относительно друг друга, происходит передача вращающего момента. Достигается повышение функциональности. 1 ил.

Изобретение относится к области высоковольтной техники, а более конкретно к изоляторам и устройствам грозозащиты. При воздействии грозового перенапряжения на изолятор-разрядник сначала пробивается искровой воздушный промежуток между нижним подводящим электродом (13) и нижним вертикальным отводом (8) нижнего ребра (15), а затем пробиваются искровые промежутки между промежуточными электродами единичных трубчатых камер (5). Далее пробивается искровой воздушный промежуток между верхним подводящим электродом (12) и верхним вертикальным отводом (7) верхнего ребра (14) и искровые промежутки единичных трубчатых камер (5), в последних возникают каналы искрового разряда между промежуточными электродами. При расширении канала искрового разряда создается высокое давление, под действием которого они выдуваются через сопла (6) наружу в окружающий ребро (4) воздух. В воде, которая была уловлена кольцевой канавкой и через радиальные каналы и поступила во внутренние полости единичных камер (5), искровые разряды вызывают появление ударных волн и гидродинамических течений, которые воздействуют на каналы искровых разрядов между промежуточными электродами. Технический результат - повышение эффективности работы изолятора-разрядника. 2 ил.

Изобретение относится к высокоскоростному наземному транспорту, а конкретнее к транспортным системам на электродинамическом подвесе. Статорные обмотки (2) линейного синхронного тягового двигателя создают бегущее магнитное поле, перемещающееся вдоль опор (1) путевой структуры. Сверхпроводящие соленоиды (6) создают магнитное поле, взаимодействие которого с бегущим магнитным полем статорных обмоток (2) приводит к возникновению силы тяги. При движении экипажа (4) происходит взаимодействие магнитного поля сверхпроводящих соленоидов (6) с вихревыми токами, наведенными в короткозамкнутых катушках подвеса (3), что приводит к возникновению электродинамической силы отталкивания - силы подвеса. При движении аэродинамических пластин (7) относительно опорных пластин (8) возникает аэродинамическая сила отталкивания, обусловленная экранным аэродинамическим эффектом. Таким образом, при заданной величине суммарной силы подвеса, действующей на экипаж (4), уменьшается величина требуемой электродинамической силы отталкивания, уменьшается величина требуемой магнитодвижущей силы вихревых токов, наведенных в короткозамкнутых катушках подвеса (3), и, следовательно, уменьшается количество витков в катушке подвеса (3). В результате улучшаются массогабаритные показатели транспортной системы на электродинамическом подвесе. 1 ил.

Предложены производные 2-гидрокси-3-фенилэтинилтио(селено)-1,4-хинонов в качестве поверхностно-активных веществ в составе моющего средства для очистки нефтеналивного оборудования от загрязнений органической и неорганической природы. Также предложено моющее средство для очистки нефтеналивного оборудования от загрязнений органической и неорганической природы, включающее силикат натрия, карбонат натрия, смачиватель ОП-10, поверхностно-активное вещество и воду, причем в качестве поверхностно-активного вещества оно содержит при следующем содержании перечисленных компонентов, мас.%: силикат натрия - 0,70-0,75, карбонат натрия - 3,5-3,75, смачиватель ОП-10 - 0,23-0,25, производное 2-гидрокси-3-фенилэтинилтио(селено)-1,4-хинонов - 0,23-0,25, вода - остальное. Технический результат - полная очистка очищаемых поверхностей при минимальном расходе моющего средства и сокращение времени ее обработки. 2 н.п. ф-лы, 1 табл.
Изобретение относится к области нефтехимии, точнее к восстановлению свойств отработанных смазочных масел, и может быть использовано на маслоочистительных и регенерационных установках

Изобретение относится к области строительных материалов

 


Наверх