Патенты автора Сериков Ростислав Иванович (RU)

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, обечайку, регулятор давления подачи топлива, устройство подачи топлива в двигатель, источник лазерного излучения и оптическую систему. Воздухозаборник, камера сгорания и сопло образуют газовый тракт двигателя. Источник лазерного излучения выполнен с возможностью генерации излучения на заданной частоте, резонансно совпадающей с частотой линии поглощения молекулярного кислорода из основного электронного состояния в возбужденное метастабильное состояние. Устройство подачи топлива в двигатель сделано в виде вертикального набора пилонов и установлено поперечно в тракте двигателя. Оптическая система размещена в тракте после устройства подачи топлива и включает, по меньшей мере, одну пару противоположно расположенных поперечно тракту, отражателей излучения с образованием между отражателями зоны сканирования излучения. На одном из отражателей установлен питающий волновод источника лазерного излучения. Устройство подачи топлива установлено в тракте воздухозаборника. В каждом пилоне выполнены топливный канал, буферная топливная емкость и сопло инжектора, сопряженные гидравлически между собой. Регулятор давления подачи топлива соединен магистралями с топливными каналами каждого пилона. Пары отражателей излучения оптической системы расположены за соплами инжекторов одного или нескольких пилонов с возможностью образования отдельных зон сканирования. Нижняя граница каждой зоны сканирования расположена над верхней задней кромкой сопла инжектора соответствующего пилона и направлена от сопла инжектора к выходу камеры сгорания с площадью сканирования, определяемой в соответствии с выражением, защищаемым настоящим изобретением. Изобретение позволяет уменьшить время задержки и температуру воспламенения топливовоздушной смеси, повысить полноту сгорания топливовоздушной смеси. 5 з.п. ф-лы, 13 ил.

Камера сгорания газотурбинного двигателя содержит корпус, расположенную в корпусе перфорированную жаровую трубу с зонами горения и разбавления, систему подачи топлива, систему подачи первичного и вторичного потоков воздуха и устройство зажигания топливовоздушной смеси. Система подачи потоков воздуха снабжена устройством воздействия на поток первичного воздуха во входном канале первичного воздуха и устройством воздействия на поток вторичного воздуха в полости кольцевого канала между стенками камеры сгорания и жаровой трубы. Устройства воздействия на потоки первичного и вторичного воздуха содержат источник лазерного излучения, делитель лазерного излучения по устройствам воздействия на потоки первичного и вторичного воздуха. Каждое устройство воздействия снабжено оптическими волокнами с вводами, подключенными к делителю лазерного излучения. Вывод оптического волокна устройства воздействия на поток первичного воздуха подключен через сквозное отверстие к входному каналу первичного воздуха, выполненного, по меньшей мере, с двумя расположенными напротив друг друга зеркалами. Устройство воздействия на поток вторичного воздуха содержит, по меньшей мере, два расположенных напротив друг друга зеркала, размещенных в полости кольцевого канала, где одно из зеркал имеет в фокальной плоскости на оси симметрии сквозное отверстие. Вывод оптического волокна устройства воздействия на поток вторичного воздуха подключен через сквозное отверстие зеркала к кольцевому каналу. Источник лазерного излучения выполнен с возможностью возбуждения молекул кислорода в метастабильные синглетные состояния. Изобретение позволяет увеличить полноту сгорания топливовоздушной смеси и к.п.д. камеры сгорания. 2 н. и 14 з.п. ф-лы, 3 ил.

Камера сгорания газотурбинного двигателя содержит корпус, жаровую трубу с зонами горения и разбавления, систему подачи топлива, систему подачи первичного и вторичного потоков воздуха, снабженную устройством воздействия на поток вторичного воздуха в полости кольцевого канала между стенками камеры сгорания и жаровой трубы, и устройство зажигания топливовоздушной смеси. Устройство воздействия на поток вторичного воздуха содержит источник лазерного излучения, оптическое волокно и, по меньшей мере, два расположенных друг напротив друга зеркала, размещенных в полости кольцевого канала. Одно из зеркал имеет на фокальной линии сквозное отверстие. Источник лазерного излучения выполнен с возможностью обеспечения возбуждения молекулярного кислорода в синглетное состояние и соединен через оптическое волокно со сквозным отверстием зеркала. Изобретение позволяет практически полностью исключить монооксид углерода в выхлопных газах газотурбинного двигателя, увеличить полноту сгорания топливовоздушной смеси и К.П.Д. камеры сгорания. 2 н. и 8 з.н. ф-лы, 2 ил.

Изобретение относится к области двигателестроения и позволяет расширить диапазон рабочих режимов двигателя с компрессионным зажиганием за счет повышения устойчивости воспламенения топливовоздушной смеси в цилиндре ДВС. Техническим результатом является упрощение конструкции двигателя и снижение его материалоемкости. Сущность изобретения заключается в том, что двигатель с компрессионным зажиганием содержит рабочий цилиндр, систему впуска, систему выпуска и систему топливоподачи и снабжен генератором синглетного кислорода, размещенным во впускном трубопроводе с возможностью обогащения воздуха, подаваемого в рабочий цилиндр молекулами синглетного кислорода. Генератор синглетного кислорода выполнен в виде источника лазерного излучения с длиной волны от 762,3 до 762,4 нанометров и камеры с входом и выходом, причем внутренняя поверхность камеры выполнена зеркальной с возможностью отражения и диффузионного рассеивания лазерного излучения. Способ работы поршневого двигателя с компрессионным зажиганием заключается в подаче воздуха и топлива во впускной трубопровод, формировании во впускном трубопроводе топливовоздушной смеси заданного состава, впуске ее в цилиндр двигателя, сжатии, воспламенении топливовоздушного заряда от сжатия, расширении продуктов сгорания и выпуске их из цилиндра двигателя, при этом молекулы кислорода воздуха, подаваемого во впускной трубопровод возбуждают в синглетные состояния O 2 ( b 1 Σ g + ) и O2(a1Δg). Количество синглетного кислорода в состоянии O2(a1Δg) устанавливают в количестве от 1 до 4 процентов от содержания кислорода в воздухе, подаваемом во впускной трубопровод. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к области двигателестроения и обеспечивает низкоэмиссионное сгорание топливовоздушной смеси, снижает риск взрыва топливовоздушной смеси. Техническим результатом является упрощение конструкции двигателя, повышение надежности и снижение токсичности продуктов сгорания. Сущность изобретения заключается в том, что двигатель содержит рабочий цилиндр, систему впуска, систему топливоподачи и систему выпуска. В системе впуска двигателя размещен генератор синглетного кислорода, выполненный в виде источника лазерного излучения и камеры с входом и выходом, причем внутренняя поверхность камеры выполнена зеркальной. В качестве источника лазерного излучения используется твердотельный лазер, излучающий волны длиной от 762,3 до 762,4 нанометров. Способ работы, реализуемый в заявленном двигателе, заключается в подаче в цилиндр двигателя воздуха и топлива, обогащении воздуха на впуске синглетным кислородом, формировании топливовоздушной смеси заданного состава, воспламенении топливовоздушного заряда в цилиндре двигателя, расширении продуктов сгорания и выпуске их из цилиндра двигателя. Во время работы двигателя измеряют температуру газов в цилиндре двигателя, а количество синглетного кислорода в воздухе, подаваемом во впускной трубопровод, устанавливают в зависимости от величины измеренной температуры. 2 н. и 3 з.п. ф-лы, 1 ил.

Изобретение относится к авиационному двигателестроению, а именно к гиперзвуковым прямоточным воздушно-реактивным двигателям (ГПВРД)

Изобретение относится к двигателестроению, а точнее к способу организации горения в гиперзвуковом прямоточном реактивном двигателе и гиперзвуковому прямоточному воздушно-реактивному двигателю с горением в наклонной детонационной волне

Изобретение относится к двигателестроению, а точнее к импульсному детонационному ракетному двигателю

 


Наверх