Патенты автора Морозов Геннадий Александрович (RU)

Изобретение относится к криптографической технике, а именно к системам квантовой рассылки криптографического ключа. Технический результат заключается в повышении защиты квантового криптографического ключа, за счет нескольких режимов работы устройства, а именно режим активного детектирования состояния фотонов и режим пассивного детектирования состояния фотонов. Предложено устройство квантовой рассылки криптографического ключа с частотным кодированием. Устройство содержит соединенные между собой волоконно-оптической линией связи передающее устройство и приемное устройство. Передающее устройство содержит источник монохроматического излучения, выход которого оптически сопряжен с входом электрооптического амплитудного модулятора передающего устройства, управляющий вход электрооптического амплитудного модулятора передающего устройства соединен с выходом устройства сдвига фазы передающего устройства. Приемное устройство также содержит спектральный фильтр, первый выход которого оптически сопряжен с входом приемника классического излучения, выход приемника классического излучения является первым выходом устройства квантовой рассылки криптографического ключа с частотным кодированием. 20 ил.

Изобретение относится к системам квантовой рассылки криптографического ключа. Технический результат заключается в уменьшении коэффициента квантовых ошибок, за счет полностью пассивной фильтрации данных на приемном устройстве. Устройство квантовой рассылки криптографического ключа с частотным кодированием содержит соединенные между собой волоконно-оптической линией связи передающее устройство и приемное устройство. Передающее устройство включает в себя источник монохроматического излучения, электрооптический амплитудный модулятор передающего устройства, электрооптический фазовый модулятор передающего устройства, аттенюатор, устройство сдвига фазы передающего устройства, генератор радиочастотного сигнала передающего устройства, преобразователь радиочастотного сигнала передающего устройства. Приемное устройство включает в себя спектральный фильтр, приемник классического излучения, первый приемник одиночных фотонов, цель достигается тем, что в передающее устройство дополнительно введено устройство подстройки фазы передающего устройства, при этом в приемном устройстве спектральный фильтр является многоканальным и имеет пять выходов, также в приемное устройство дополнительно введены второй приемник одиночных фотонов, третий приемник одиночных фотонов, четвертый приемник одиночных фотонов. 12 ил.

Устройство относится к измерительной технике и может быть использовано в радиолокации и радиофотонике. Техническим результатом является снижение погрешности определения доплеровского измерения частоты. Заявленное устройство определения доплеровского измерения частоты отраженного радиолокационного сигнала содержит лазер, оптический разъединитель, блок электрооптических модуляторов, волоконную брэгговскую решетку, оптический объединитель и фотодетектор, электронный векторный анализатор цепей. Блок электрооптических модуляторов состоит из последовательно включенных однопортовых амплитудного и фазового модуляторов. В устройство введен дополнительный блок электрооптических модуляторов, состоящий из последовательно включенных однопортовых амплитудного и фазового модуляторов. 2 ил.

Изобретение относится к измерительной технике и может быть использовано в радиолокации и радиофотонике. Техническим результатом является снижение погрешности измерений. Заявленное устройство определения угла прихода отраженного радиолокационного сигнала состоит из лазера, оптического разъединителя, блока электрооптических модуляторов, оптического объединителя, фотодетектора, электронного векторного анализатора цепей. При этом блок электрооптических модуляторов содержит тандемные амплитудный и фазовый модуляторы, включенные последовательно. 1 ил.

Изобретение относится к радиоизмерительной технике, а именно к измерению температурного поля нагрева СВЧ-излучением в закрытых камерах, и предназначено для контроля распределения электромагнитного и теплового поля нагрева СВЧ-излучением. Согласно заявленному решению преобразователи с волоконно-оптическим датчиком температуры 2 в виде матрицы M×N термочувствительных непроводящих элементов, которые последовательно соединены волокном 8, размещённых на диэлектрическом основании 1, помещают в исследуемое поле системы 3. Включают СВЧ-нагрев на время, чтобы преобразователи 2 нагревались до температуры 60-300°С. Для измерения температуры преобразователей 2 через циркулятор 6 засвечиваются излучением широкополосного лазерного диода 4 с помощью оптического фильтра 5. Отраженное от преобразователей 2 излучение через второе плечо циркулятора 6 попадает на оптический фильтр с наклонной линейной характеристикой 9 и далее на фотоприемник 10 с полосой пропускания, равной максимальной адресной частоте, присущей структурам массива. Обработанный АЦП 11 сигнал с выхода фотоприемника 10 поступает на ПЭВМ 7. ПЭВМ, используя калибровочные характеристики ТП, МАВБС и ОФНЛХ, вычисляет распределения тепловых полей в рабочей камере и как решение обратной задачи распределение интенсивности ЭМП в ней. Технический результат - изобретение позволяет минимизировать искажение структуры исследуемого поля, а также определяется отсутствием взаимодействия измеряемых ЭМП и элементов измерительной аппаратуры, высоким быстродействием, устойчивостью к воздействию электромагнитных помех, диэлектрическим характером соединений в системах, пожаробезопасностью, малыми массой и габаритами, работоспособностью в широком диапазоне температур и, наконец, возможностью объединения в волоконно-оптическую систему съема, передачи и обработки информации, управления и синхронизации процессов. 2 н.п. ф-лы, 3 ил.

Изобретение относится к электромагнитным устройствам обеззараживания сыпучих продуктов (например, пивной дробины, пшеничных отрубей и т.п.) и может быть использовано в пивоваренной, комбикормовой, пищевой и других отраслях промышленности. В устройство обеззараживания сыпучих продуктов, содержащее щелевую антенну, генератор ЭМИ КВЧ, дополнительно введены конвейер с закрепленной над ним планкой-ограничителем и закрепленной над конвейером щелевой антенной, установленной на высоте, равной ширине конвейера с допуском ±10%, фидер, соединяющий щелевую антенну и генератор ЭМИ КВЧ с диапазоном частот 64-65 ГГц. Щелевая антенна закреплена над конвейером с помощью кронштейнов. Над конвейером в начальной его части установлен бункер для исходного продукта, а в конечной части конвейера закреплен бункер для конечного продукта. Технический результат заключается в упрощении конструкции устройства обеззараживания сыпучих продуктов. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области систем квантовой рассылки криптографического ключа. Техническим результатом является повышение достоверности рассылки криптографического ключа по квантовому каналу. Устройство квантовой рассылки криптографического ключа с частотным кодированием содержит соединенные между собой волоконно-оптической линией связи передающее устройство и приемное устройство; а также блок синхронизации; при этом передающее устройство включает в себя источник монохроматического излучения, электрооптический фазовый модулятор передающего устройства, аттенюатор, устройство сдвига фазы передающего устройства, генератор радиочастотного сигнала передающего устройства; при этом приемное устройство включает в себя электрооптический фазовый модулятор приемного устройства, оптический циркулятор, спектральный фильтр, приемник одиночных фотонов, приемник классического излучения, устройство сдвига фазы приемного устройства, генератор радиочастотного сигнала приемного устройства, причем в передающее устройство дополнительно введены электрооптический амплитудный модулятор передающего устройства и преобразователь радиочастотного сигнала передающего устройства; в приемное устройство также дополнительно введены электрооптический амплитудный модулятор приемного устройства, преобразователь радиочастотного сигнала приемного устройства. 9 ил.

Изобретение относится к области измерения температуры в зонах с сильными электромагнитными помехами, в зонах повышенной взрыво-пожароопасности, при измерениях под высоким напряжением и в других условиях, где недопустимо применение стандартных электронных средств контроля температурного состояния, а именно к системам для мониторинга температурного состояния в медицине, на объектах энергоснабжения, инженерных сооружениях. Заявленный волоконно-оптический термометр содержит оптический ответвитель, циркулятор, оптический фильтр, N-1 последовательно соединенных посредством волоконных световодов оптических разветвителей, N-1 оптических датчиков, N последовательно соединенных посредством волоконных световодов оптических объединителей, где N - натуральное число и N≥1. Первый выход каждого предыдущего из N оптического разветвителя соединен с входом каждого последующего соответствующего из N оптического разветвителя, второй выход каждого введенного из N-1 оптического разветвителя соединен с входом соответствующего из N-1 оптического датчика посредством волоконного световода. Выход каждого из N оптического датчика соединен со вторым входом соответствующего из N оптического объединителя посредством волоконного световода, причем первый вход каждого предыдущего из N оптического объединителя соединен с выходом каждого последующего соответствующего из N оптического объединителя. Выход первого из N оптического объединителя соединен с входом оптического ответвителя посредством волоконного световода. Первый выход оптического ответвителя соединен с входом первого фотоприемника посредством волоконного световода, а второй выход оптического ответвителя соединен с входом циркулятора посредством волоконного световода. Первый выход циркулятора соединен с оптическим фильтром посредством волоконного световода, второй выход циркулятора соединен с входом второго фотоприемника посредством волоконного световода, а выходы первого и второго фотоприемника соединены с первым и вторым входами контроллера определения температуры соответственно посредством электрических проводов. Источник лазерного излучения выполнен широкополосным, а каждый оптический датчик выполнен на основе волоконной решетки Брэгга с двумя фазовыми сдвигами. Технический результат - упрощение схемы волоконно-оптического термометра. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области измерения температуры в зонах с сильными электромагнитными помехами, в зонах повышенной взрыво- и пожароопасности, при измерениях под высоким напряжением и в других условиях, где недопустимо применение стандартных электронных средств контроля температурного состояния, а именно к системам для мониторинга температурного состояния в медицине, на объектах энергоснабжения, инженерных сооружениях. Волоконно-оптический термометр содержит оптический разветвитель, вход и выходы которого соответственно соединены волоконными световодами с третьим выходом светораспределительной системы и с каждым волоконно-оптическим датчиком, а в каждом волоконно-оптическом датчике перед записанной на торце волоконного световода первой волоконной решеткой Брэгга записана вторая волоконная решетка Брэгга по меньшей мере с двумя фазовыми сдвигами. В волоконно-оптическом термометре в каждом волоконно-оптическом датчике первая волоконная решетка Брэгга может быть записана либо как продолжение второй волоконной решетки Брэгга, тогда конструкция датчика имеет вид щупа, либо на расстоянии от второй волоконной решетки Брэгга, позволяющем свернуть петлю и уложить первую волоконную решетку Брэгга в непосредственном контакте со второй, закрепив их на наконечнике произвольной плоской или объемной формы, тогда конструкция датчика имеет кольцевой вид. Технический результат - повышение чувствительности измерений. 4 з.п. ф-лы. 5 ил.

Изобретение относится к области оптических измерений, в частности к способам и устройствам для определения центральной частоты симметричной оптической структуры. При реализации способов определения центральной частоты симметричной оптической структуры генерируют одночастотное зондирующее излучение, преобразуют его в двухчастотное, подают его на вход и принимают с выхода симметричной оптической структуры. Далее перестраивают частоту зондирующего излучения в диапазоне измерений, лежащую в области полосы пропускания симметричной оптической структуры, регистрируют изменения его параметров, по которым вычисляют центральную частоту симметричной оптической структуры. При этом при реализации способа по первому варианту разностную частоту выбирают не превышающей полуширины склонов симметричной оптической структуры. В ходе перестройки частоты одночастотного оптического излучения запоминают первое значение коэффициента модуляции огибающей биений между составляющими двухчастотного зондирующего излучения m=m1 и фиксируют соответствующее ему значение средней частоты двухчастотного зондирующего излучения fCP = fCP1. Далее в ходе перестройки частоты одночастотного оптического излучения запоминают второе значение коэффициента модуляции огибающей биений между составляющими двухчастотного зондирующего излучения m=m2=m1 и фиксируют соответствующее ему значение средней частоты двухчастотного зондирующего излучения fCP = fCP2. После чего вычисляют центральную частоту симметричной оптической структуры по формуле fЦ = (fCP1 + fCP2)/2. При реализации способа по второму варианту в ходе перестройки частоты одночастотного оптического излучения регистрируют данные двух соседних измерений, в первом из которых коэффициент модуляции огибающей биений между составляющими двухчастотного зондирующего излучения m=m3<1, а во втором m=m4=1, и запоминают значение средней частоты двухчастотного зондирующего излучения fCP = fCP4 для второго из них. Далее в ходе перестройки регистрируют данные двух других соседних измерений, в первом из которых коэффициент модуляции огибающей биений между составляющими двухчастотного зондирующего излучения m=m5=1, а во втором m=m6<1, и запоминают значение средней частоты двухчастотного зондирующего излучения fCP = fCP5 для первого из них, по которым вычисляют центральную частоту симметричной оптической структуры как fЦ = (fCP4 + fCP5)/2. Устройство для определения центральной частоты симметричной оптической структуры состоит из последовательно соединенных перестраиваемого по частоте источника одночастотного оптического излучения, преобразователя одночастотного оптического излучения в двухчастотное, циркулятора, первого волоконно-оптического кабеля, один конец которого соединен с первым выходом циркулятора, а второй конец - с входом симметричной оптической структуры, второго волоконно-оптического кабеля, один конец которого соединен с выходом симметричной оптической структуры, а второй конец - со вторым входом циркулятора, детектора, перестраиваемого фильтра разностной частоты, а также контроллера управления и измерения центральной частоты симметричных оптических структур. Причем перестраиваемый по частоте источник одночастотного оптического излучения, преобразователь одночастотного оптического излучения в двухчастотное, перестраиваемый фильтр разностной частоты и контроллер управления и измерения центральной частоты имеют входы/выходы управления, объединенные в шину управления. Технический результат изобретения заключается в повышении точности определения центральной частоты как узкополосной, так и широкополосной симметричной оптической структуры. 3 н.п. ф-лы, 4 ил.

Изобретение относится к области микроволновых технологий и может найти применение при проектировании микроволновых установок предпосевной обработки семян в диапазоне сверхвысокой частоты (СВЧ) и диапазоне крайне высокой частоты (КВЧ). В излучателе для микроволновых установок, содержащем излучатель СВЧ диапазона (1) и излучатель КВЧ диапазона (2), имеющие соответствующие элементы ввода мощности (3), излучатель СВЧ диапазона в излучающем элементе имеет сквозное отверстие, в которое помещен излучающий элемент излучателя КВЧ диапазона так, что раскрыв излучающего элемента (5) излучателя КВЧ диапазона и раскрыв излучающего элемента излучателя СВЧ диапазона находятся в одной плоскости. Изобретение обеспечивает повышение качества формирования диаграммы направленности излучателя для микроволновой установки предпосевной обработки семян. 1 ил.
Группа изобретений относится к области сельского хозяйства. Изобретение по первому варианту включает предпосевную обработку семян пшеницы или других злаковых культур воздействием на них электромагнитных полей интенсивностью 10-18…10-12 Вт/см2 в диапазоне 40…60 ГГц с экспозицией 10…30 минут. Изобретение по второму варианту включает предпосевную обработку семян пшеницы или других злаковых культур воздействием на них электромагнитных полей интенсивностью 0.05-0.2 Вт/см2 в диапазоне 1-4 ГГц с экспозицией 5-40 секунд. Решаемая задача по двум предлагаемым вариантам заключается в повышении эффективности способа улучшения микробиологических показателей почвы и расширении области его применения. Группа изобретений использует экологически чистую технологию, стимулирует рост нативных почвенных азотфиксирующих микроорганизмов и ингибирует рост фитопатогенных почвенных грибов, что повышает качество и плодородие почвы, снижает производственные затраты. 2 н.п. ф-лы.

Изобретение относится к ветеринарии и может быть использовано при лечении мастита у коров. Воздействуют электромагнитным излучением крайневысокочастотного диапазона на физиологический раствор не менее 30 минут. Расстояние от излучателя до стакана (содержимое 45-50 мл) 14-15 см, частота 42194±20 МГц. Воздействуют однократно, при длине волны λ равной 7,1 мм. Облученный раствор ежедневно вводят интрацистернально, сразу после доения. Лечение продолжают не менее 5 дней до полного выздоровления. Способ обеспечивает повышение эффективности и сокращение сроков лечения, предупреждает рецидив воспалительного патологического процесса в молочной железе и сосках за счет введения экологически безопасного раствора, вызывающего активизацию неспецифической резистентности и нормализацию воспалительного процесса. 1 табл.

Техническое решение относится к технике резонансных радиотехнических измерений для вычисления и мониторинга комплексной диэлектрической проницаемости материалов. Сущность: способ для измерения характеристик резонансных структур заключается в том, что генерируют одночастотное зондирующее колебание, преобразуют его в многочастотное, подают его на вход и принимают с выхода резонансной структуры, перестраивают частоту зондирующего колебания в диапазоне измерений, соответствующем полосе частот резонансной структуры, регистрируют изменения его параметров, по которым определяют резонансную частоту fp, амплитуду Up и добротность Q резонансной структуры. Отличительной особенностью данного способа является то, что зондирующее колебание на входе резонансной структуры формируют как два двухчастотных колебания с двумя парами составляющих равной или попарно равной амплитуды соответственно на частотах f11, f12 и f21, f22 с одинаковой средней частотой fC=(f11+f12)/2=(f21+f22)/2 и разными разностными частотами ΔfP1=f11-f12 и ΔfP2=f21-f22, меньших или одна из которых равна полосе пропускания резонансной структуры, перестраивают среднюю частоту fC, причем в ходе перестройки разностные частоты ΔfP1 и ΔfP2 оставляют неизменными, регистрируют изменение средней частоты зондирующего колебания fC и параллельно измеряют коэффициент модуляции m1 и m2 огибающих сигнала биений между составляющими 1-го и 2-го двухчастотных колебаний на выходе резонансной структуры. По достижении коэффициентом модуляции значения m1=m2=1 измеряют резонансную частоту fP как равную значению средней частоты fC в данный момент времени и измеряют соответствующие ему амплитуды огибающих сигнала биений между составляющими 1-го и 2-го двухчастотных колебаний U1 и U2 на выходе резонансной структуры, далее вычисляют резонансную амплитуду UP резонансной структуры по выражению U p = ( χ 2 U 1 2 − U 2 2 ) / ( χ 2 − 1 ) , где χ=U2ΔfP2/U1ΔfP1, и добротность Q резонансной структуры - Q = f p Δ f P i ( U p / U i ) 2 − 1 , где i равно 1 или 2. В устройство для измерения характеристик резонансных структур, содержащее последовательно соединенные перестраиваемый по частоте генератор, преобразователь одночастотного колебания в многочастотное, коммутатор и детектор, а также контроллер управления и измерения характеристик резонансных структур, последовательно соединенные с коммутатором первую линию передачи, резонансную структуру и вторую линию передачи, где второй выход коммутатора подключен к входу первой линии передачи, а второй вход коммутатора подключен к выходу второй линии передачи, дополнительно введены перестраиваемые избирательные фильтры соответственно первой и второй разностных частот, подключенные входами параллельно к выходу детектора, выходами соответственно к первому и второму входам контроллера управления и измерения характеристик резонансных структур, а перестраиваемый по частоте генератор, преобразователь одночастотного колебания в многочастотное, коммутатор, контроллер управления и измерения характеристик резонансных структур и перестраиваемые избирательные фильтры соответственно первой и второй разностных частот имеют входы/выходы управления, объединенные в шину управления. Технический результат: повышение чувствительности и точности измерений. 2 н.п. ф-лы, 3 ил., 2 прил.

Изобретение относится к технике резонансных радиотехнических измерений. Способ включает генерацию зондирующего колебания, подачу на вход и прием с выхода резонансной структуры, перестройку частоты зондирующего колебания в диапазоне измерений, соответствующем полосе частот резонансной структуры, регистрацию изменения его параметров, по которым определяют резонансные частоту, амплитуду и добротность резонансной структуры. Зондирующее колебание на входе резонансной структуры формируют двухчастотным с двумя составляющими равной амплитуды со средней частотой и начальной разностной частотой меньшей или равной полосе пропускания резонансной структуры. Резонансную частоту резонансной структуры измеряют в момент времени достижения коэффициентом модуляции огибающей сигнала биений между составляющими зондирующего колебания на выходе резонансной структуры значения 1, как равную значению средней частоты. Вычисляют резонансную амплитуду резонансной структуры и добротность резонансной структуры. Далее, не меняя средней частоты зондирующего колебания, изменяют начальную разностную частоту. После чего измеряют амплитуду огибающей сигнала биений между составляющими зондирующего колебания на выходе резонансной структуры. Устройство содержит перестраиваемый по частоте генератор 1, коммутатор 2, детектор 3, соединенный с контроллером 4 управления и измерения характеристик резонансных структур, а также последовательно соединенные первую линию передачи 5, резонансную структуру 6 и вторую линию передачи 7, причем первый выход коммутатора 2 подключен к входу первой линии передачи 5, его второй вход к выходу второй линии передачи 7, а второй выход к входу детектора 3. Перестраиваемый по частоте генератор 1, коммутатор 2 и контроллер 4 управления и измерения характеристик резонансных структур имеют входы/выходы управления, объединенные в шину управления 8. Дополнительно введен преобразователь 9 одночастотного колебания в двухчастотное, детектор 3, выполнен как детектор огибающей, при этом преобразователь 9 одночастотного колебания в двухчастотное имеет входы/выходы управления, подключенные к шине управления 8, его вход подключен к выходу перестраиваемого по частоте генератора 1, а выход к первому входу коммутатора 2. Технический результат заключается в повышении чувствительности и точности измерений. 2 н.п. ф-лы, 2 ил.

Изобретение относится к технике оптических измерений и может быть использовано для измерения параметров физических полей (температура) с помощью оптических датчиков. Согласно заявленному предложению для определения параметра физического поля находят разность между амплитудами огибающих. По зависимости от разности амплитуд огибающих определяют обобщенную расстройку полосы пропускания оптического датчика от средней частоты первой и второй сгенерированных пар сигналов, которая однозначно связана с параметром измеряемого физического поля. Для осуществления данного способа предложено устройство, содержащее последовательно соединенные источник лазерного излучения, первый волоконно-оптический кабель, оптический датчик, второй волоконно-оптический датчик и фотоприемник, а также контроллер определения параметра физического поля. В устройство также введены два избирательных фильтра и два амплитудных детектора. При этом источник лазерного излучения выполнен четырехчастотным, а выход фотоприемника через первый избирательный фильтр и первый амплитудный детектор подключен к первому входу контроллера определения параметра физического поля, который выполнен как контроллер определения температуры, и параллельно через второй избирательный фильтр и второй амплитудный детектор к его второму входу. Технический результат: повышение точности измерений. 2 н. и 3 з.п. ф-лы, 2 ил.

Изобретение относится к оптической измерительной технике и может быть использовано для измерения параметров физических полей

Изобретение относится к технике для зимнего содержания городов, аэродромов, транспортных и промышленных объектов

Изобретение относится к технике нагрева материалов и изделий с помощью СВЧ энергии и может быть использовано в нефтедобывающей и нефтеперерабатывающей промышленности в процессе подготовки и транспортировки товарной нефти, а также в других областях народного хозяйства, в технологических процессах, требующих осуществления нагрева нетвердой диэлектрической среды

Изобретение относится к области биотехнологии и может найти применение в лесных хозяйствах для улучшения качества почвы за счет повышения содержания азотфиксирующих бактерий в ризосфере всходов, сеянцев сосны и ели

Изобретение относится к нефтедобывающей, химической и другим отраслям промышленности, в которых используются устройства для анализа качества воды, в частности определения концентрации нефти в промысловых сточных водах, используемых в технологическом процессе их очистки и подготовки для обратной закачки в пласт

Изобретение относится к области радиотехники и телевидения и может быть использовано при формировании, передаче и приеме видеокадров

Изобретение относится к нефтедобывающей промышленности, в частности к устройствам для анализа состава сырой нефти в технологическом процессе ее добычи, сбора, подготовки и транспортировки

Изобретение относится к измерительной технике

 


Наверх