Патенты автора Юсупов Владимир Сабитович (RU)

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении оправки прошивного стана. На первом переходе осадкой исходной заготовки осуществляют оформление входного конуса заготовки. На втором переходе прямым выдавливанием получают коническую заготовку без концевого выступа с высотой, равной 0,75-0,90 высоты готовой оправки. Максимальный диаметр конуса в верхней части равен 0,95-0,98 диаметра оправки, в нижней части – 1,0-1,3 диаметра оправки, примыкающей к концевому выступу оправки. В средней части диаметр составляет 0,7-0,9 диаметра готовой оправки в соответствующем сечении. На третьем переходе производят комбинированное выдавливание внутренней полости оправки и концевого выступа, на четвертом переходе - окончательное формообразование открытой штамповкой заднего конического участка оправки. В результате обеспечивается снижение технологического усилия, повышение стойкости прошивного инструмента, увеличение глубины полости оправки. 2 н. и 2 з.п. ф-лы, 5 ил.

Изобретение относится к области металлургии, а именно к способам термической обработки порошковых магнитотвердых сплавов системы железо-хром-кобальт. Может использоваться при производстве постоянных магнитов. Порошковый магнитотвердый сплав Fe-30Cr-16Co-0,5Sm подвергают гомогенизации при 1300°С в течение 1 часа и закалке от 1300°С. Затем проводят ИТМО при 656°С в течение 23 мин, а двухступенчатый отпуск осуществляют путем охлаждения от 656°С до 580°С со скоростью v1=13,6°С/час и последующего охлаждения от 580°С до 500°С со скоростью v2=4,8°С/час. Обеспечивается повышение магнитных гистерезисных свойств. 4 ил., 2 табл.

Изобретение относится к способу определения диаметра отверстия полой оправки на ее переднем торце для винтовой прошивки в трехвалковом стане. Осуществляют деформацию прокаткой в трехвалковом стане заготовки, диаметр которой равен диаметру заготовки при прошивке в трехвалковом стане с использованием упомянутой полой оправки. После упомянутой прокатки заготовки вдоль ее радиуса выбирают не менее 7 точек с равным расстоянием между ними. Измеряют твердость в этих точках и данные результаты измерений отображают в системе координат. После нанесения точек в этой же системе координат строят линию тренда с использованием нанесенных точек, отображающую зависимость твердости материала заготовки от расстояния от центра, на полученной линии тренда находят точку минимума твердости заготовки и определяют расстояние от центра заготовки до упомянутой точки минимума. Умножают найденное расстояние на два и полученное значение принимают равным диаметру отверстия полой оправки на ее переднем торце. В результате обеспечивается совпадение диаметра отверстия полой оправки на переднем торце с диаметром ослабленной кольцевой зоны. 3 ил., 1 пр.

Изобретение относится к определению площади контакта валка и заготовки при прокатке на гладкой бочке. Проводят компьютерное моделирование процесса прокатки с помощью вычислительной среды конечно-элементного анализа. Вводят систему координат. На границах области контакта, находящихся со стороны входа полосы и выхода полосы, выбирают соответственно по не менее 10 точек. Определяют координаты выбранных точек по оси, лежащей в горизонтальной плоскости и сонаправленной с направлением прокатки, и по оси, лежащей в горизонтальной плоскости и перпендикулярной оси прокатки. После этого выбирают не менее 5 точек в областях контакта на противоположных кромках заготовки. Для выбранных точек определяют координаты по оси, сонаправленной с осью прокатки, и оси, перпендикулярной оси прокатки и лежащей в горизонтальной плоскости. После этого в среде трехмерного компьютерного проектирования создают эскиз в горизонтальной плоскости и наносят на него все выбранные ранее точки. Нанесенные точки последовательно соединяют линиями с помощью инструментария среды трехмерного компьютерного проектирования. Полученный в эскизе многоугольник проецируют на цилиндрическую поверхность валка. После этого на цилиндрической поверхности валка появляется замкнутая область, площадь которой равна площади контакта валка и заготовки при прокатке на гладкой бочке. В результате обеспечивается возможность расчета площади контакта валка и заготовки при прокатке на гладкой бочке. 11 ил., 1 пр.

Изобретение относится к металлургии, а именно к получению прутков из сплавов с памятью формы (СПФ) на основе никелида титана легированных гафнием, и может быть использовано для изготовления специальных изделий с повышенной температурой эксплуатации для различных отраслей промышленности, медицины и техники. Способ получения прутков из сплава TiNiHf с высокотемпературным эффектом памяти формы включает выплавку слитков и их деформацию. Выплавляют слитки заданного химического состава с содержанием гафния 1,0-3,0 ат. %, никеля 48,5-50,0 ат. % и титан - остальное, из чистых исходных компонентов Ti, Ni и Hf или из готового сплава никелида титана в виде прутка и гафниевой проволоки повышенной чистоты методом электроннолучевой плавки в медном водоохлаждаемом кристаллизаторе ручьевого типа, проводят гомогенизирующий отжиг слитков в вакууме не менее 10-4 мм рт. ст. при температуре 1050°С в течение не менее 1 ч. Последующую деформацию осуществляют путем ротационной ковки в интервале температур 750-950°С с единичными обжатиями не более 7% или прокатки в интервале температур 750-950°С с коэффициентом вытяжки за проход не более 1,15, а затем проводят последеформационный отжиг при температуре 400-550°С в течение 1-10 ч. Обеспечивается получение прутков из сплавов TiNiHf контролируемого фазового и химического состава, обладающих высокотемпературным эффектом памяти формы, а также высокими механическими характеристиками. 5 табл., 2 пр.

Изобретение относится к областям металловедения и обработки металлов. Способ создания трехмерной модели зерна металлоизделия включает следующие стадии: в интересующей области изделия делают два первичных шлифа, при этом плоскости шлифов перпендикулярны, оценивают размер зерна для каждого из шлифов, выбирают максимальную оценку размера зерна, в этой же области делается не менее 5 вторичных шлифов, параллельных плоскости одного из двух первичных шлифов, расстояние между первым и последним вторичным шлифом не меньше максимальной оценки размера зерна, определенной по результатам исследования двух первичных шлифов, определяют в каждом из вторичных шлифов сечения, соответствующие одному и тому же зерну, контуры сечений зерна строятся в системе автоматизированного компьютерного проектирования с учетом расстояния между вторичными шлифами и положением каждого из сечений в соответствующем вторичном шлифе, используя инструментарий меню системы автоматизированного компьютерного проектирования, по имеющимся сечениям строят трехмерную модель зерна изделия. Техническим результатом изобретения является получение трехмерной модели зерна материала. 11 ил.

Изобретение относится к прокатному оборудованию, в частности к станам винтовой прокатки. Стан винтовой прокатки содержит рабочую клеть с четырьмя валками, образующими очаг деформации с входным и выходным конусами. При этом все четыре валка являются приводными. Два валка выполнены чашевидными и имеют одинаковые размеры, другие два валка выполнены грибовидными и имеют одинаковые размеры. Отношение диаметра в пережиме чашевидного валка к диаметру в пережиме грибовидного валка составляет от 1,1 до 1,4. Чашевидные валки расположены относительно оси прокатки под углом от 5 до 7°, а грибовидные под углом раскатки от 7 до 10°. Угол подачи для всех валков составляет от 14 до 16°. В сечении выхода гильзы из валков вектор геликоидального движения для всех валков одинаков по направлению и величине. В результате обеспечивается повышение технологических возможностей стана, обеспечение его высокой надежности и долговечности, повышение точности прокатываемых изделий и получение более равномерной структуры в объеме прутков и полых трубных заготовок. 1 ил.

Изобретение относится к области обработки металлов давлением. Способ прогнозирования разрушения заготовок в процессах обработки металлов давлением основан на использовании компьютерного моделирования в вычислительной среде конечно-элементного анализа и экспериментальной оценки. Проводится компьютерное моделирование исследуемого процесса обработки металлов давлением, по результатам для исследуемой точки заготовки строят траекторию в координатах «накопленная деформация - коэффициент жесткости напряженного состояния». Проводят стандартные испытания образцов из материала деформируемой заготовки в исследуемом процессе, по окончанию которых определяют значения накопленной деформации в момент разрушения. В тех же координатах, в которых строили траекторию, наносят две или три точки, соответствующие результатам стандартных испытаний, откладывая по оси абсцисс 1 для растяжения, 0 для кручения, -1 для сжатия. По оси ординат откладывают значения накопленной деформации, определенные по результатам соответствующих стандартных испытаний. Через полученные точки проводят линию, получая линию предельной пластичности. В результате обеспечивается определение областей в объеме деформированной заготовки, которые либо наиболее склонны к разрушению, либо в которых произойдет разрушение. 5 ил., 1 табл.

Изобретение относится к области обработки металлов давлением и может быть использовано для получения бесшовных труб раскаткой полых трубных заготовок в стане винтовой прокатки. Полую трубную заготовку - гильзу подвергают раскатке в четырехвалковом стане винтовой прокатки, все валки которого являются приводными, с обжатием по стенке до 60% на цилиндрической оправке. Два валка имеют одинаковые размеры и их располагают в стане по чашевидной схеме, другие два валка имеют одинаковые размеры и их располагают в стане по грибовидной схеме. Валки изготавливают так, чтобы отношение диаметра в пережиме чашевидного валка к диаметру в пережиме грибовидного валка составляло 1,1-1,4, валки располагают таким образом, чтобы угол раскатки для чашевидных валков составлял от -3° до -10°, угол раскатки для грибовидных валков составлял от 3° до 10°, угол подачи для всех валков составлял от 6° до 12°. Изобретение обеспечивает возможность уменьшения разностенности и овальности труб. 2 табл., 3 ил.

Изобретение относится к металлургии, а именно к получению прутков из сплава с памятью формы на основе никелида титана (Ti-Ni), и может быть использовано при производстве объемных и длинномерных полуфабрикатов из сплавов на основе никелида титана с памятью формы. Способ получения объемных наноструктурированных прутков из сплавов с памятью формы на основе никелида титана включает равноканальное угловое прессование горячекатаной заготовки после закалки в интервале температур 700-800°С с охлаждением в воде. Равноканальное угловое прессование проводят в квазинепрерывном режиме в интервале температур 350-450°С за 5-7 проходов с углом пересечения каналов 110-120°, далее осуществляют последеформационный отжиг при температуре 350-450°С в течение 1-2 часов. После равноканального углового прессования может быть проведена ротационная ковка в интервале температур 350-400°С с единичными обжатиями 1-15% до требуемого конечного диаметра заготовки. Обеспечивается повышение механических и функциональных свойств полуфабрикатов из Ti-Ni путем формирования в них УМЗ структуры: смешанной нанокристаллической и наносубзеренной после РКУП и после деформационного отжига, смешанной наносубзеренной и субмикрокристаллической после равноканального углового прессования, ротационной ковки и последеформационного отжига. 2 н.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к области обработки металлов давлением. Способ заключается в том, что заготовку прошивают на глубину, равную 0,5÷0,75 от ее исходной длины, процесс прошивки останавливают, заготовку снимают с оправки. Далее определяют размеры заготовки и оправки. На основе измерений в компьютерной среде трехмерного проектирования создают модель заготовки, и создают вырез в виде тела вращения с размерами и формой идентичными размерам и форме оправки. Ось вращения выреза совпадает с осью симметрии модели заготовки, при этом та часть выреза, которая формой и размерами идентична форме и размерам носика оправки, совпадает с углублением на модели заготовки, полученным вследствие внедрения носика в металл заготовки в процессе прошивки. После создания выреза появляются замкнутые области на внутренней поверхности заготовки. С помощью инструментария компьютерной среды трехмерного проектирования вычисляется площадь полученных областей на внутренней поверхности заготовки и полученное значение используют в качестве величины площади контакта оправки и прошиваемой трубной заготовки. Техническим результатом является определение площади контакта заготовки и прошивной оправки, без применения дополнительного оборудования, сложных вычислений и временных затрат. 6 ил.
Изобретение относится к сплавам на основе магния, в частности к способам деформационной обработки магниевых сплавов, и может быть использовано для получения изделий, применяемых в качестве конструкционных материалов в авиации, ракетной технике, транспорте и т.д. Способ обработки магниевого сплава системы Mg-Al-Zn включает предварительную термообработку путем гомогенизирующего отжига при температуре 450-500°C и ротационную ковку, причем ротационную ковку осуществляют ступенчато в интервале температур 400-350°C с суммарной истинной степенью деформации 2,5-3, при этом ковку на каждой ступени осуществляют при температуре на 25°C ниже предыдущей ступени до получения структуры, состоящей из зерен со средним размером меньше 5 мкм, насыщенных двойниками деформации. Техническим результатом изобретения является повышение прочности сплава на основе магния системы Mg-Al-Zn с одновременным повышением его пластичности. 1 пр.

Изобретение относится к прокатному производству, конкретно к конструкциям прокатных валков в клетях листопрокатных станов дуо, в том числе одноклетьевых. Комплект прокатных валков содержит пару валков с бочками цилиндрической формы, на которых выполнены геликоидальные выступы, имеющие форму винтовых линий. Повышение механических свойств листового проката обеспечивается за счет того, что угол захода винтовых линий составляет 42-47°, направление их захода на валках совпадает или противоположно, при этом винтовые выступы на одном валке расположены напротив гладких участков бочки другого валка или оппозитно. Многократное измельчение литой макроструктуры при обжатии обеспечивает улучшение проработки литой макроструктуры сплава, повышение его технологической пластичности и исключение разрушения заготовок в валках. 2 н.п. ф-лы, 2 ил., 1 табл.

Изобретение может быть использовано при получении листового композиционного материала системы титан-алюминий для изготовления деталей летательных аппаратов, в том числе подвергаемых повышенным тепловым нагрузкам. Способ включает получение слоистой заготовки в виде пакета и последующую ее прокатку. Слоистую заготовку получают сваркой пакета в твердой фазе в газозащитной среде путем прокатки при температуре 420-470°C с относительным обжатием 20-30%. Затем заготовку подвергают многопроходной холодной прокатке до заданной толщины при относительном обжатии за проход 10-15% и с промежуточными отжигами при температуре не выше 500°C после достижении суммарной степени деформации более 35%. После чего проводят заключительную термическую обработку при температуре 500-800°C с выдержкой 1-4 ч. Технический результат состоит в повышении механических и функциональных свойств листового композиционного материала. 1 табл.

Изобретение относится к получению порошковых магнитотвердых сплавов. Способ получения порошкового магнитотвердого сплава 30Х20К2М2В системы железо-хром-кобальт включает приготовление шихты из порошков железа, хрома, кобальта, молибдена и вольфрама, формование полученной шихты, спекание, термообработку и термомагнитную обработку. Причем после спекания до термообработки проводят горячую пластическую деформацию с вытяжкой не менее 1,1. Термомагнитную обработку проводят в температурном интервале 650-600°С. Обеспечивается снижение температуры спекания сплава и повышение магнитных гистерезисных свойств слава при сохранении высоких значений коэрцитивной силы. 1 табл., 1 пр.

Изобретение относится к области металлургии, в частности к термической обработке магнитотвердых сплавов системы железо-хром-кобальт, используемых при производстве постоянных магнитов. Способ термической обработки магнитотвердых сплавов системы железо-хром-кобальт с содержанием кобальта 8 вес. % включает гомогенизацию, закалку, термомагнитную обработку с последующим многоступенчатым отпуском, при этом отпуск на последней ступени проводят при температуре 420°С. Повышаются значения магнитных гистерезисных свойств, в том числе коэрцитивной силы HcB и максимального энергетического произведения (ВН)макс. 1 табл.
Изобретение относится к порошковой металлургии, в частности к получению постоянных магнитов из магнитотвердых сплавов на основе системы железо-хром-кобальт. Готовят шихту, содержащую порошки железа, хрома, кобальта и легирующих элементов, и проводят ее механоактивацию в планетарной шаровой мельнице в среде этилового спирта в течение 2-15 минут, с последующей сушкой. Полученную шихту формуют, спекают и подвергают термообработке, в т.ч. термомагнитной. Обеспечивается снижение времени и температуры спекания. 2 з.п. ф-лы, 2 табл., 2 пр.
Изобретение относится к порошковой металлургии, в частности к получению постоянных магнитов из магнитотвердых сплавов системы железо-хром-кобальт. Шихту, содержащую порошки железа, хрома, кобальта, легирующие добавки и до 15 мас.% нанопорошков железа, хрома и кобальта, формуют с получением заготовки. После чего проводят спекание и термообработку, включая термомагнитную обработку. Обеспечивается уменьшение времени и температуры спекания. 1 табл.
Изобретение относится к области металлургии, в частности к производству магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности. Для повышения остаточной индукции сплав подвергают гомогенизации, закалке, термомагнитной обработке и многоступенчатому отпуску, причем нагрев сплава до температуры проведения термомагнитной обработки ведут в магнитном поле. 1 табл.

Изобретение относится к области металлургии, в частности к обработке магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в приборостроении, релейной технике, электромашиностроении, медицине, автомобильной промышленности и т.д. Для повышения коэрцитивной силы изделий из Fe-Cr-Co сплавов осуществляют термическую обработку изделий, включающую гомогенизацию, закалку, термомагнитную обработку и многоступенчатый отпуск, при этом перед проведением термомагнитной обработки дополнительно проводят нагрев и выдержку с обеспечением выделения сигма-фазы. 1 табл.

Изобретение относится к области прокатного производства и может быть использовано для получения металлических холоднокатаных и горячекатаных листов с повышенными механическими свойствами
Изобретение относится к области электротехники, в частности к передаче электроэнергии по алюминиевым проводам и кабелям

Изобретение относится к прокатному производству, конкретнее к конструкциям прокатных валков, и может быть использовано при изготовлении металлических полос с повышенными механическими и функциональными свойствами

Изобретение относится к технологии прокатного производства, конкретно, к технологии непрерывной прокатки тонких полос, и может быть использовано на многоклетевых непрерывных широкополосных станах, преимущественно, на станах холодной прокатки как более энергоемких, где предъявляются повышенные требования к качеству поверхности выходящей из стана готовой полосы и одновременно к экономии электроэнергии

Изобретение относится к прокатному производству, конкретнее к изготовлению гнутых профилей и, в частности, прямоугольных сварных замкнутых профилей

Изобретение относится к области обработки металлов давлением, в частности к технологии профилирования гнутых профилей

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении круглых сварных прямошовных труб различного назначения
Изобретение относится к области металлургии и машиностроения и используется для изготовления режущего инструмента, штампов, рабочих валков листопрокатных станов стали типа «90Х»

Изобретение относится к металлургии, в частности к получению функциональных композиционных материалов для использования в автоматике и приборостроении в качестве высокочувствительных сенсоров (датчиков) различного назначения

Изобретение относится к металлургии, в частности к производству магнитотвердых сплавов на основе системы Fe-Cr-Co, которые применяются в автоприборостроении, релейной технике, электромашиностроении, медицине и т.д

Изобретение относится к прокатному производству, конкретнее к изготовлению сварных прямошовных труб

Изобретение относится к трубному производству, в частности к производству высокочастотной сваркой длинномерных труб из углеродистых сталей
Изобретение относится к области металлургии, в частности к коррозионно-стойким сталям, предназначенным для медицинских целей, в пищевой промышленности для изготовления столовых приборов, в том числе изделий, получаемых методом литья

 


Наверх