Патенты автора Романов Олег Николаевич (RU)

Изобретение относится к способу химико-термической обработки литой монокристаллической лопатки из никелевого сплава для газовых турбин. Способ включает термическую обработку и диффузионное алитирование, при этом в качестве термической обработки проводят гомогенизацию и закалку лопатки, после чего лопатку помещают в контейнер, засыпают ее шихтовой смесью, содержащей алюминий и никель, а последующее диффузионное алитирование лопатки проводят при температуре алитирования, соответствующей температуре старения сплава, под воздействием деформации сжатия вдоль оси лопатки со сжимающим напряжением σ=(0,3-0,7)⋅σT, где σ - сжимающее напряжение, МПа, σT - предел текучести, МПа, и со скоростью нагружения менее 10-3 %/с-1. Техническим результатом настоящего изобретения является создание способа химико-термической обработки литых монокристаллических лопаток из никелевых сплавов, обеспечивающего высокие показатели механических свойств и коррозионной стойкости. 4 ил., 1 табл., 1 пр.

Изобретение относится к области черной металлургии и может быть использовано при изготовлении толстостенных поковок из сталей аустенитного класса, применяемых для получения изделий тепловой и атомной энергетики. Выплавленный слиток после полного прогрева подвергают гомогенизации при температуре 1190±20°C с выдержкой 16 часов. Слиток подвергают осадке при температуре 1190±20°С. Затем осуществляют операции ковки при температуре, не превышающей 1090±20°C, с охлаждением поковок после окончания процесса ковки в воде. Проводят аустенизацию поковок при температуре 1025±20°C с выдержкой 1,2-1,3 мин/мм сечения с последующим охлаждением в воде. В результате обеспечивается уменьшение зерна в металле поковки и предотвращение образования трещин. 2 табл., 1 пр.

Изобретение относится к области черной металлургии, а именно к технологии термической обработки крепежных деталей ядерных реакторов. В способе термической обработки крепежных деталей ядерных реакторов из сталей бейнитного класса, включающем нагрев под закалку заготовок от температур на 30-50°С выше точки Ас3 с выдержкой 1,5-2 мин/мм сечения и последующий высокий отпуск при температуре 630-700°С с выдержкой 5-6 мин/мм сечения с охлаждением на воздухе, механическую обработку готовых деталей с припуском на химико-термическую обработку, химико-термическую обработку и последующее термическое улучшение, согласно изобретению после химико-термической обработки детали повторно подвергают закалке и высокому отпуску по идентичному режиму предварительной термической обработки и осуществляют дополнительный отпуск в диапазоне температур 450±10°С с выдержкой 2,0-7,0 часов с дальнейшим охлаждением на воздухе. Способ позволяет получать крепежные детали ядерных реакторов из сталей бейнитного класса с повышенной размерной точностью при сохранении заданных механических свойств. 2 табл.

Изобретение относится к области металлургии легированных сталей и сплавов, которые предназначены для использования в атомном энергетическом машиностроении при производстве основного оборудования АЭС, а именно для изготовления внутрикорпусной выгородки водо-водяных энергетических реакторов (ВВЭР) с ресурсом не менее 60-ти лет. Радиационно-стойкая аустенитная сталь содержит углерод, кремний, марганец, хром, никель, титан, молибден, кальций, лантан, церий и железо при следующем соотношении элементов, мас.%: C 0,06÷0,10, Si 0,40÷0,60, Mn 1,50÷2,00, Cr 15,0÷16,0, Ni 24,00÷26,00, Mo 0,70÷1,40, Ti (5*C+0,10)÷0,80, Ca 0,001÷0,003, La+Ce 0,001÷0,005, P ≤0,035, S ≤0,008, N ≤0,020, Co ≤0,025, Cu ≤0,3, Sn ≤0,001, Sb ≤0,001, As ≤0,001, Bi ≤0,001, Pb ≤0,001, железо - остальное. Повышается стойкость к распуханию при воздействии нейтронных потоков при дозах до 150 смещений на атом (сна) при сохранении требуемых механических свойств. 1 з.п. ф-лы, 3 ил., 3 табл.

Изобретение относится к производству поковок из штамповой стали типа 5ХНМ, предназначенных для изготовления штампов для горячей штамповки. В процессе выплавки стали в нее вводят кальций в количестве от 0,0005 до 0,003%. Затем осуществляют ковку, при которой перед первым выносом слиток нагревают в печи до температуры 1200-1220°С с удельной выдержкой из расчета τуд=1,7-2,5 мин на мм сечения, определяемой по размеру средней части слитка. Перед вторым выносом поковку нагревают в печи до температуры 1200÷1220°С с удельной выдержкой из расчета τуд=0,8-1,3 мин на мм сечения, определяемой по размеру средней части поковки. Затем осуществляют термическую обработку полученной поковки. В результате обеспечивается повышение сопротивления хрупкому разрушению поковок в процессе их изготовления. 2 ил., 2 табл.

Изобретение относится к области дозиметрии, а именно к способу осуществления, поиска и обнаружения источников гамма-излучения. Способ поиска и обнаружения источников гамма-излучения в условиях неравномерного радиоактивного загрязнения дополнительно содержит этапы, на которых определяют источник с максимально активным излучением, проводят замер мощности излучения коллимированным детектором и одновременно определяют расстояние до источника с помощью детекторного лазерного дальномера, при этом оси коллимированного детектора и лазерного дальномера направляют параллельно с разнесением по горизонтали, регистрируют показания лазерного дальномера и значение дозы мощности, фиксируемой детектором, затем на основании этих данных вычисляют мощность дозы излучения реального источника, после чего для проверки адекватности измеренного расстояния до источника излучения перемещают ось нацеливания дальномера на величину разнесения по горизонтали, повторно измеряют и регистрируют расстояние, результаты поочередных измерений расстояния сравнивают и при расхождении в замерах в пределах погрешности лазерного дальномера информацию признают достоверной. Технический результат – повышение точности измерения расстояния до источника. 3 з.п. ф-лы, 1 ил.

Изобретение относится к металлургии и может быть использовано при изготовлении крупногабаритных обечаек корпусов реакторов типа ВВЭР-1000. Изготавливают цельнокованую заготовку длиной не менее длины обечайки с учетом технологических припусков. Толщина стенки заготовки превышает толщину стенки обечайки не менее чем в два раза. Со стороны внутренней поверхности заготовки из припуска по толщине отбирают пробы для механических испытаний. Отбор проб производят на расстоянии от торцов заготовки не менее ее толщины. Вырезают образцы проб для механических испытаний при расположении их продольных осей на расстоянии от внутренней поверхности заготовки не менее чем 1/3 T, и не более чем 1/2 Т, где Т - толщина заготовки. С внутренней стороны заготовки вырезают кольца для производственного контрольного сварного соединения. В результате обеспечивается повышение надежности и срока службы корпуса реактора за счет применения для изготовления его активной зоны цельнокованой заготовки, позволяющей вынести сварные швы за пределы зоны интенсивного облучения, оказывающего негативное влияние на механические свойства металла и его сопротивление хрупкому разрушению. 4 ил., 1 табл.

Изобретение относится к технологии изготовления поковок, предназначенных для изготовления деталей и узлов, работающих при низких температурах, например контейнеров для перевозки и длительность хранения (более 50 лет) отработавшего ядерного топлива

Изобретение относится к области металлургии, а именно к листовой хладостойкой стали, используемой в атомном энергомашиностроении при серийном производстве высоконадежной контейнерной техники для транспортировки и длительного хранения отработавшего ядерного топлива и радиоактивных отходов атомной и термоядерной энергетики

Изобретение относится к конструкции энергетической трубопроводной арматуры, используемой в качестве запорного предохранительного органа в трубопроводах с жидкими средами, и предназначена для повышения безопасности эксплуатации действующих атомных электростанций с жидким теплоносителем
Изобретение относится к долговременному хранению твердых радиоактивных отходов (ТРО), образующихся при эксплуатации промышленных реакторов, в процессе работы атомных электростанций и других ядерных производств

Изобретение относится к области металлургии

Изобретение относится к области производства сталей для основного оборудования атомных энергетических установок

Изобретение относится к металлургии, в частности к разработке составов легированных аустенитных сталей, используемых в различных отраслях промышленности для деталей ответственного назначения

 


Наверх