Патенты автора Клочко Владимир Константинович (RU)

Изобретение относится к системам пеленгации движущихся объектов на основе обработки радиотехнических или акустических (гидроакустических) сигналов, принимаемых антенной решеткой (АР). Техническим результатом является обеспечение сокращения времени обработки сигналов за счет обработки сигналов не в частотной, а во временной области. В отличие от прототипа, в котором угловые координаты движущихся объектов находятся фазовым методом путем выделения доплеровских частот объектов в спектрах промежуточной частоты нескольких измерительных каналов с последующим измерением фаз выделенных спектральных составляющих, в предложенном способе доплеровские частоты объектов выделяются во временной области при сглаживании сигналов по мере их поступления в измерительных каналах, а фазы также измеряются во временной области путем подачи поступающих сигналов на вход специально настроенного калмановского фильтра с учетом найденных частот, на выход которого подаются оценки фаз, что позволяет уменьшить время измерения фаз и нахождения угловых координат объектов в два раза. 1 табл.

Изобретение относится к системам слежения за движущимися воздушными объектами с помощью приемопередающей радиостанции, обрабатывающей сигналы отражения от объектов. Технический результат изобретения заключается в обеспечении устранения ошибок классификации объектов за счёт совместного использования с радиостанцией сканирующего радиометра. В отличие от прототипа, в котором по результатам обнаружения нескольких объектов осуществляется слежение за объектами - их траекторное сопровождение без учета энергетических характеристик объектов, в предлагаемом способе при траекторном сопровождении объектов измеряется их радиояркостная температура с помощью совмещенного с радиостанцией радиометра, что позволяет классифицировать объекты по их энергетическим характеристикам.

Использование: изобретение относится к многопозиционным пассивным системам обнаружения движущихся объектов. Сущность: система состоит из нескольких взаимно ориентированных радио-, оптических или акустических приемников, совмещенных с радиометром и принимающих сигналы отражения или излучения от быстро движущихся объектов. Дополнительно учитывает радиояркостную температуру объектов, измеряемую с помощью совмещенного радиометра путем перемещением линии визирования его антенны в направлении экстраполированных положений объектов. Способ может быть использован в существующих многопозиционных пассивных системах пеленгации объектов. Технический результат: повышение вероятности обнаружения всех объектов за счет уменьшения вероятности ошибок первого и второго рода, а также повышение точности оценивания пространственных координат объектов пассивной системой приемников при их совместной работе с радиометром.

Изобретение относится к многопозиционным сканирующим системам наблюдения за объектами в полуактивном и пассивном режимах. Система состоит из нескольких приемников (радиотехнических, радиометрических, оптических), принимающих сигналы отражения или излучения от объектов. Техническим результатом является увеличение скорости обнаружения объектов без ошибок первого и второго рода за счет вывода линий визирования антенн приемников в упрежденные точки пространства появления объектов. Заявленный способ заключается в размещении нескольких приемников, их взаимной ориентации в единой системе координат, приеме в них сигналов от объектов, вычислении показателей сопряжения векторов направлений на объекты и сравнении их с порогом обнаружения, определении оценок векторов пространственных координат и скоростей обнаруженных объектов. При этом объекты в каждом периоде обзора ранжируют по степени важности в зависимости от дальности и направления вектора скорости и в порядке ранжирования находят экстраполированное положение каждого объекта. После этого осуществляют переключение линий визирования антенн n приемников в направлении экстраполированного положения, вычисляют показатели сопряжения векторов направлений на объекты, находящиеся в зоне видимости всех приемников, сравнивают показатели с порогом обнаружения и определяют оценки векторов пространственных координат и скоростей обнаруженных объектов. Найденные оценки ставят в соответствие с ранее полученными оценками и формируют их группы. Вычисляют для каждой группы показатель правдоподобия, сравнивают его с порогом правдоподобия и сбрасывают ложные группы. Далее повторяют указанные операции в последовательности нескольких периодов обзора, после чего на последнем периоде из всех полученных групп оценок выбирают непересекающиеся группы в порядке значения показателя правдоподобия, принимают число выделенных групп за число окончательно обнаруженных объектов и оценки этих групп - за оценки траекторных параметров объектов.

Изобретение относится к многопозиционным радиотехническим доплеровским системам наблюдения за объектами. Система состоит из нескольких приемников и передатчиков. Приемники принимают отраженные сигналы, излучаемые внешними передатчиками на определенных частотах. Предложенный способ, в отличие от прототипа, позволяет осуществлять пространственное разделение передатчиков и приемников, использовать произвольное число приемников и произвольное число передатчиков, а также учитывать направления на объект со стороны удаленных передатчиков. Вектор скорости движения объекта находится решением системы линейных алгебраических уравнений с учетом ортов направлений на объект и измеренных доплеровских частот в единой системе координат. Увеличение числа приемников и передатчиков, а также учет направлений на объект со всех точек пеленгации приводит к повышению точности оценок координат вектора скорости объекта и надежности работы системы в целом. Способ может быть использован в многопозиционных системах пеленгации объектов с пространственным разделением произвольного числа передатчиков и приемников.

Способ может быть использован в многопозиционных оптических, тепловых или пассивных радиосистемах видения для наблюдения за малоразмерными объектами. Способ заключается в составлении n пар (n≥2) взаимно ориентированных приемников, определении в каждой паре ортов векторов направлений на объекты, выборе неповторяющихся вариантов соединения ортов в сопряженные пары по критерию сопряжения и для выбранных вариантов вычисляют оценки дальностей и пространственных координат объектов. Взаимные положения ортов векторов направлений на объекты в каждой паре близки к ортогональным. Операции над ортами выполняют в единой для всех приемников системе координат. Осуществляют кластеризацию координат, полученных во всех n парах приемников, и пространственные координаты центров кластеров передают на сопровождение объектов. Если происходит отказ в работе отдельного приемника в какой-либо паре, то оставшийся в этой паре рабочий приемник соединяют с другим приемником из состава работающих пар с учетом ортогональности направлений на объекты, и образуют новую пару, и продолжают образование новых пар в случае новых отказов. Технический результат - сокращение вычислительных затрат при сохранении надежности и точности работы пассивной системы видения.

Использование: для создания многопозиционных радиосистем пеленгации объектов в радиодиапазоне длин волн на малой дальности. Сущность изобретения заключается в том, что способ определения пространственных координат и скоростей объектов сканирующей многопозиционной радиосистемой заключается в размещении в пространстве нескольких радиоприемников, сканирующих зону обзора и взаимно ориентированных матрицами поворота и базовыми векторами, соединяющими системы координат приемников, формировании в одном периоде сканирования ортов векторов направлений на объекты, распределении этих ортов по принадлежности конкретным объектам с учетом моментов времени образования ортов и нахождении оценок дальностей до объектов и координат векторов скоростей путем решения системы уравнений линейной зависимости векторов, при этом добавляют внешний радиопередатчик, и сканирование антенн приемников осуществляют электронным образом в последовательности периодов с задержкой во времени, при этом в каждом периоде сканирования сигналы, переданные передатчиком и принятые приемниками, преобразуют в комплексные спектры, выделяют спектральные составляющие, амплитуды которых превышают порог обнаружения полезного сигнала и по факту превышения порога определяют амплитудно-фазовым методом угловые координаты азимута и угла места положения объектов, после чего на основе угловых координат находят орты векторов направлений на объекты в системах координат приемников, группируют орты по принадлежности конкретным объектам, затем из координат ортов каждой группы и разностей моментов времени сканирования составляют по определенному правилу матрицу А, вычисляют матрицу весовых коэффициентов W=(ATA)-1AT, где “T” и “-1” - символы транспонирования и обращения матрицы, умножают матрицу W слева на вектор В координат базовых векторов и получают вектор X=W⋅В оценок дальностей и координат вектора скорости для каждой группы сопряженных векторов, умножают оценки дальностей на орты и получают вектор пространственных координат объекта. Технический результат: обеспечение возможности определения координат ортов направлений на объекты за счет измерения угловых координат объектов и нахождение пространственных координат объектов вместе с оценками векторов их движения за счет увеличения времени между периодами сканирования в приемниках при наличии передатчика.

Изобретение относится к многопозиционным радиотехническим системам наблюдения за группой движущихся объектов, разрешимых по доплеровской частоте. Способ может найти применение в существующих многопозиционных радиотехнических системах обнаружения и траекторного сопровождения объектов, работающих в режиме "Silent Sentry System". Техническим результатом изобретения является обеспечение возможности получения оценок положения и скорости в группе объектов путем фиксации ортов направлений на объекты в один дискретный момент времени при устойчиво обращаемой матрице. Предложенный способ позволяет получать оценки положения и скорости в группе объектов путем измерения угловых координат и ортов направлений на объекты отражения фазовым методом на основе спектральных составляющих принятых сигналов, выделенных на доплеровских частотах, обнаруживать объекты по критерию сопряжения векторов направлений на объекты в стереопарах приемников, находить оценки дальностей до обнаруженных объектов и их пространственные координаты, а также векторы скоростей объектов на основе решения систем алгебраических уравнений в один дискретный момент времени.

Изобретение относится к пассивным системам пространственного видения оптического, инфракрасного и радиотехнического диапазонов длин волн, предназначенным для наблюдения за объектами, и может найти применение в существующих пассивных системах наблюдения за объектами. Техническим результатом изобретения является уменьшение ошибок оценивания дальностей до объектов и их пространственных координат, а также увеличение вероятности правильного распределения направляющих векторов по принадлежности объектам за счет использования дополнительной информации об амплитудах сигналов от объектов. В способе нахождения пространственных координат объектов в пассивных системах видения расположение первого и k-го приемников взаимно ориентируют матрицей поворота осей и базовым вектором k-го приемника по отношению к первому, определяют орты векторов направлений на объекты в первом приемнике и орты векторов направлений на объекты в k-м приемнике, последовательно выбирают m неповторяющихся вариантов соединения пар ортов с наименьшими значениями показателей сопряжения векторов и дальностями до объектов, вычисленными по критерию минимума этих показателей. Число n приемников выбирают равным 3 или 4, располагают приемники на окружности или сфере с ортогональным расположением линий визирования k-х приемников по отношению к первому приемнику, затем перебором mn вариантов соединения ортов вычисляют оценки дальностей до объектов по критерию минимума показателя сопряжения векторов, далее последовательно выбирают m неповторяющихся вариантов соединения ортов с наименьшими суммарными показателями сопряжения векторов с учетом амплитуд принятых сигналов и для выбранных вариантов вычисляют пространственные координаты объектов в системе координат первого приемника. 1 табл.

Изобретение относится к пассивным радиосистемам, предназначенным для наблюдения за движущимися объектами в радиодиапазоне длин волн. Достигаемый технический результат – определение дальности до объекта в пассивном режиме работы радиоприемников и определение его пространственных координат. Указанный результат достигается за счет того, что для реализации способа определения координат движущегося объекта пассивной радиосистемой используют два взаимно удаленных и ориентированных в пространстве радиоприемника с антенными решетками, которые принимают отраженный от движущегося объекта радиосигнал, переданный радиопередатчиком, расположенным отдельно от радиоприемников. По результатам обработки принятых сигналов на доплеровских частотах определяются угловые координаты объекта и орты векторов направлений на объект. Способ, в отличие от активных радиолокационных систем, позволяет в пассивном режиме наблюдения за объектом определить дальности до объекта и его пространственные координаты на основе решения системы уравнений для сопряженных векторов направлений на объект.

Изобретение относится к пассивным системам видения оптического, инфракрасного и миллиметрового диапазонов длин волн, предназначенным для наблюдения за объектами, и может найти применение в пассивных системах ближнего зондирования наземных и воздушных объектов. Достигаемый технический результат – сокращение времени сканирования радиометрического приемника за счет передачи угловых координат центров объектов от оптического приемника радиометрическому приемнику с последующим сканированием в малой окрестности переданных ему координат. Указанный результат достигается за счет того, что система состоит из радиометрического приемника (радиометра) со сканирующей антенной, совмещенного с оптическим приемником. Приемники наблюдают объекты в заданном секторе обзора. По результатам наблюдения формируются матрицы радиотеплового и оптического изображения объектов.

Изобретение относится к пассивным системам наблюдения за объектами с помощью сканирующего радиометра миллиметрового диапазона длин волн. Достигаемый технический результат - повышение пространственного разрешения. Указанный результат достигается за счет того, что в результате сканирования пространства антенной радиометра по азимуту и углу места после первичной обработки принимаемых сигналов формируется матрица радиотеплового изображения (РТИ), элементы которой подчинены модели вида двумерной свертки, которая при определенных условиях может быть представлена в виде двух одномерных моделей, что позволяет более рационально (с меньшим количеством вычислений) выполнять операции восстановления радиотепловых изображений (РТИ). Способ реализует двухэтапную процедуру восстановления изображения в матрице РТИ: вначале строки матрицы РТИ в процессе их формирования подвергают обработке с помощью одномерного восстанавливающего фильтра Винера и получают матрицу промежуточных оценок, затем столбцы матрицы промежуточных оценок подвергают обработке с помощью одномерного восстанавливающего фильтра Винера и получают матрицу восстановленного изображения с повышенным пространственным разрешением. 3 ил.

Изобретение относится к пассивным сканирующим системам видения оптического, инфракрасного и миллиметрового диапазонов длин волн, предназначенным для наблюдения за движущимися объектами. Достигаемый технический результат – определение пространственного положения, скорости и ускорения объекта в пассивной сканирующей системе видения. Система состоит из нескольких приемников, взаимно удаленных и ориентированных в пространстве. Сканирование осуществляется изменением углового положения линии визирования приемника во времени по определенному правилу. По результатам сканирования формируются орты направлений на объект в системах координат приемников и фиксируются моменты времени их образования. Предложенный способ позволяет в каждом периоде сканирования находить векторы пространственных координат положения объекта, скорости и ускорения его движения. Для этого из координат ортов и разностей моментов времени их образования составляется матрица системы уравнений и находится ее решение матричным методом.

Изобретение относится к пассивным системам радиовидения миллиметрового диапазона длин волн, предназначенным для наблюдения за малоразмерными движущимися объектами. Технический результат изобретения заключается в возможности повысить вероятность обнаружения всех движущихся объектов и точность определения их пространственных координат. Для радиометрической системы, состоящей из двух взаимно удаленных радиометров со сканирующими по пространству антеннами, орты направлений на объекты образуются линией визирования антенн и запоминаются в угловых координатах азимута и угла места элементов матриц радиоизображений. При движении объектов орты получают неучтенное приращение, что приводит к ошибкам сопряжения и определения пространственных координат объектов. Способ позволяет находить сопряженные пары ортов векторов направлений на объекты в системе двух радиометров в условиях движущихся объектов и случайных помех за счет определения скорости изменения координат ортов с учетом моментов времени их образования.

Изобретение относится к пассивным системам радиовидения, работающим по принципу стереопары. Для расчета дальностей требуется знание взаимной ориентации двух систем координат - матрицы поворота осей координат, которую находят из условия компланарности сопряженных векторов направлений на объекты и базового вектора. Предложенный способ заключается в установлении стереопары из двух взаимно удаленных на базовое расстояние наблюдателей при известном базовом векторе, формировании в системах координат наблюдателей n пар сопряженных ортов a1(i) и a2(i) векторов направлений на центры i-x объектов, нахождении матрицы Р поворота осей координат на углы α, β, γ численным методом подбора углов, при этом с помощью найденной матрицы Р и известного вектора t вычисляются оценки дальностей r1(i) и r2(i), на основе найденных дальностей вычисляются пространственные координаты центров объектов в системах координат наблюдателей. Предлагаемый способ позволяет прошедшие проверку на компланарность векторы дополнительно проверить на выполнение достаточного условия сопряжения и одновременно определить дальности до объектов. 1 табл.

Изобретение относится к области радиосистем наблюдения. Технический результат – уменьшение вычислительных затрат за счёт введения правила выбора сопряженных пар точек или ортов направлений на эти точки. Способ ориентации систем координат наблюдателей в пассивной системе видения заключается в установлении стереопары из двух взаимно удаленных на базовое расстояние наблюдателей и формировании двух матриц изображения одной и той же сцены, содержащей m точечных объектов наблюдения, причем измеряют расстояния от центра каждого наблюдателя до m контрольных i-x объектов - наклонные дальности, определяют орты направлений на объекты в системах координат двух наблюдателей, пересчитывают координаты ортов в координаты точек и затем рассматривают m! вариантов соединения точек первого и второго наблюдателей в m неповторяющихся сопряженных пар и в системе координат первого наблюдателя составляют матричное уравнение, при этом вычисляют оценку вектора методом наименьших квадратов, далее среди m! вариантов соединения выбирают один вариант с наименьшей суммой квадратов невязок и из состава вектора, соответствующего выбранному варианту, извлекают оценки параметров для матрицы и вектора, которые помещают в состав искомой матрицы и вектора.

Изобретение относится к области пассивных радиосистем. Технический результат – повышение надежности и точности оценивания пространственных координат системы наблюдения. Способ повышения надежности и точности пассивной системы видения заключается в расположении удаленных наблюдателей, выполнении сегментации изображений в матрицах наблюдателей и нахождении центров сегментов, причем количество наблюдателей n>2 параллельно выполняют n однотипных схем операций, причем при выполнении k-й схемы считают, что k-й наблюдатель является основным, а остальные – вспомогательные; пересчитывают координаты в координаты k-го наблюдателя, при этом в n-1 пар наблюдателей перебирают варианты соединения ортов направлений на объекты в сопряженные пары с вычислением пространственных координат объектов и выбирают наилучший вариант показателя правильности сопряжения, затем из всех n-1 пар наблюдателей выбирают одну пару с наилучшим показателем сопряжения и запоминают значение показателя и пространственные координаты объектов, после чего среди n параллельно выполненных схем операций выбирают схему с наилучшим показателем сопряжения и полученные для данной схемы оценки пространственных координат m объектов передают на сопровождение.

Изобретение относится к пассивным радиометрическим системам наблюдения за движущимися малоразмерными объектами. Достигаемый технический результат – повышение точности определения траектории движения объектов. Радиометрическая система состоит из нескольких радиометров, работающих с перекрытием соседних зон обзора. Синхронно сканирующие антенны принимают радиосигналы электромагнитных полей излучения от нескольких объектов в миллиметровом диапазоне длин волн, по результатам сканирования формируются матрицы радиотеплового изображения (РТИ). Объекты при своем движении пересекают перекрывающиеся зоны обзора радиометров. Предлагаемый способ позволяет на основе сегментации матриц РТИ определять векторы параметров сегментов и классифицировать их по принадлежности движущимся объектам с целью определения траекторий движения. Способ учитывает специфику сканирующих радиометров путем фиксации моментов времени образования сегментов и учитывает эти моменты при формировании траекторий с применением критерия оптимальности. Дополнительно определяются дальности до объектов и их пространственные координаты. 2 табл.

Изобретение относится к пассивным системам видения оптического, инфракрасного и миллиметрового диапазонов длин волн, предназначенным для наблюдения за малоразмерными объектами. Достигаемый технический результат - определение дальностей как в оптических, так и в радиосистемах при наличии нескольких объектов наблюдения. Указанный результат достигается за счет того, что способ определения дальностей в пассивных системах видения заключается в определении ортов векторов направлений на центры объектов в матрицах изображения двух взаимно удаленных наблюдателей и выборе неповторяющихся пар ортов, поставленных в соответствие друг другу, по критерию минимума квадрата евклидовой нормы вектора ошибок сопряжения ортов с одновременным вычислением оценок дальностей до объектов. На основе полученных оценок дальностей определяются пространственные координаты объектов. 1 табл.

Изобретение относится к радиолокации, а именно к бортовым импульсно-доплеровским радиолокационным станциям (РЛС), работающим в режиме узкополосной доплеровской фильтрации и предназначенным для наблюдения за наземными или воздушными объектами. Достигаемый технический результат - выделение спектральных отсчетов в доплеровских спектрах измерительных каналов в условиях колебания частоты. Указанный результат достигается за счет того, что в доплеровских спектрах измерительных каналов выделяются по определенному правилу наиболее правдоподобные непересекающиеся группы спектральных отсчетов, соответствующие объектам. Комплексные измерения каждой выделенной группы используются далее для определения пространственных координат этих объектов.

Изобретение относится к пассивной радиолокации, а именно к радиотеплолокационным станциям (РТЛС) наблюдения за поверхностью и воздушной обстановкой. Технический результат изобретения - повышение разрешающей способности радиометрического изображения при сохранении информации о тепловых характеристиках наблюдаемых объектов в частотных диапазонах, соответствующих различным антеннам радиотеплолокационной станции (РТЛС). Указанный результат достигается за счет того, что осуществляют наблюдение за поверхностью или воздушной обстановкой с помощью сканирующей РТЛС, содержащей несколько антенн с разными диаграммами направленности (ДН), которые принимают сигналы в разных частотных диапазонах, формируют Q матриц радиометрических изображений по числу антенн, затем совместно обрабатывают, при этом выбирают матрицу Y1, соответствующую антенне с наименьшей шириной ДН, подвергают матрицу Y1 операциям восстановления с помощью фильтра Винера и получают матрицу восстановленного изображения Х2, после чего с помощью операций сегментации разбивают матрицу Х2 на непересекающиеся однородные по амплитуде сегменты; для элементов остальных (Q-1) матриц, соответствующих каждому сегменту, вычисляют среднюю амплитуду и формируют совокупность матрицы Х2 и (Q-1) матриц с вычисленными средними амплитудами, представляющую радиометрическое изображение наблюдаемой поверхности или воздушной обстановки. 4 ил.

Изобретение относится к пассивным радиотеплолокационным системам (РТЛС) наблюдения миллиметрового диапазона длин волн, предназначенным для формирования радиотеплового изображения объектов в зоне обзора. Достигаемый технический результат - обеспечение возможности на базе сканирующего радиометра формировать радиотепловое изображение зоны обзора с пространственным разрешением, соответствующим размерам элементов искомой матрицы изображения. Указанный результат достигается применением способа формирования радиотеплового изображения, который заключается в сканировании антенной радиометра зоны обзора по азимуту и углу места, формировании по результатам сканирования матрицы наблюдений Y, ее обработке оператором восстановления R1 и получении матрицы Y1=R1[Y] радиотеплового изображения, при этом радиометр совмещают с фотокамерой, которая дает матрицу Х1 оптического изображения зоны обзора при центральном положении антенны. В матрице Х1 меняют масштаб на соответствие масштабу матрицы Y1 и получают матрицу Х2, которую с помощью оператора R2 подвергают операциям сегментации по контрасту суммы амплитуд соответствующих элементов матриц Y1 и Х2, взятых с определенными весовыми коэффициентами, и получают матрицу меток S=R2[Y1,X2], где каждому i-му, j-му элементу присвоен номер s сегмента, которому он принадлежит. Затем усреднением элементов матрицы Y1 с меткой s определяют среднюю радиометрическую амплитуду каждого s-го сегмента и присваивают эту амплитуду элементам матрицы Х2 с той же меткой s, в результате из матрицы Х2 получают матрицу радиотеплового изображения с повышенным пространственным разрешением.
Изобретение относится к способам формирования температурной карты местности путем регистрации электромагнитного излучения, испущенного находящимися на местности объектами. Предложен способ формирования температурной карты местности, включающий регистрацию посредством радиометра электромагнитного излучения в миллиметровом диапазоне длин волн с формированием матрицы радиометрического изображения местности, регистрацию с помощью тепловизора излучения в инфракрасном диапазоне длин волн с получением матрицы оптического изображения местности и ее дальнейшей сегментацией на непересекающиеся однородные по амплитуде подобласти, приведение матрицы радиометрического изображения в соответствие масштабу матрицы оптического изображения, определение соответствующих элементов матрицы радиометрического изображения и вычисление средней амплитуды этих элементов, которую присваивают всем элементам подобласти матрицы оптического изображения, переведение амплитуды элементов матрицы оптического изображения в уровни цветности и формирование температурной карты местности. Технический результат - получение температурной карты местности в миллиметровом диапазоне длин волн с высоким пространственным разрешением, характерным для инфракрасного диапазона длин волн.

Изобретение относится к радиотеплолокации, а именно к пассивным системам наблюдения за объектами с помощью многоканальных радиотеплолокационных станций (РТЛС) или радиометров со сканирующими антеннами. Достигаемый технический результат - повышение пространственного разрешения изображений в матрицах радиотеплового изображения (РТИ) в равной степени для всех каналов с сохранением температурных характеристик частотных диапазонов. Многоканальная РТЛС с несколькими совмещенными антеннами, имеющими разные характеристики диаграмм направленности (ДН), принимает сигналы в разных частотных диапазонах. Антенны сканируют зону обзора, смещаясь по азимуту и углу места. В результате сканирования и первичной обработки принимаемых сигналов в нескольких измерительных каналах (по числу антенн) формируются матрицы РТИ. Положительный эффект достигается за счет умножения матриц РТИ на определенные коэффициенты и последующей совместной обработки матриц с помощью операций восстановления изображений.

Изобретение относится к радиотеплолокации, а именно к радиотеплолокационным (пассивным) системам наблюдения за объектами с помощью сканирующего радиометра, работающего в миллиметровом диапазоне длин волн в условиях повышенного шага сканирования антенны радиометра. Достигаемый технический результат - увеличение быстродействия, повышение пространственного разрешения изображения объектов, формируемого радиометром с большим шагом сканирования. Способ заключается в применении двух антенн, одновременно сканирующих по пространству в ортогональных направлениях, получении в результате сканирования двух матриц радиометрического изображения с пропусками строк и столбцов, заполнении недостающих строк и столбцов интерполяцией, обработке матриц восстанавливающим фильтром Винера и объединении результатов обработки в одной матрице с повышенным пространственным разрешением. 1 табл., 2 ил.

Изобретение относится к пассивным радиотеплолокационным системам наблюдения за объектами с помощью сканирующего радиометра с двумя антеннами, принимающими сигналы в двух частотных диапазонах. Достигаемый технический результат – повышение пространственного разрешения изображения в первой матрице, полученной для широкой диаграммы направленности (ДНА), до разрешения второй матрицы, полученной для узкой ДНА, с сохранением температурных характеристик частотного диапазона первой. Указанный результат достигается тем, что в способе формирования изображения используют две антенны, одна из которых имеет широкую диаграмму направленности, а другая антенна - узкую ДНА. Наличие двух антенн необходимо для определения излучающих свойств объектов в разных частотных диапазонах. 4 ил.

Изобретение относится к радиотеплолокации, а именно к пассивным системам наблюдения за объектами с помощью сканирующего радиометра, и может быть использовано для получения радиотеплового изображения различных объектов. Технический результат изобретения заключается в определении корректной величины аппаратной функции радиометра в условиях его эксплуатации с целью обеспечения возможности получения радиотеплового изображения наблюдаемых объектов. Указанный результат достигается за счет размещения в зоне обзора антенны радиометра контрольного объекта, сканирования объекта антенной радиометра по азимуту и углу места, формирования радиометрического и оптического изображений области, содержащей контрольный объект с прилегающим фоном; формирования матриц Y и X, соответственно, радиометрического и оптического изображения, сегментирования матрицы X по контрасту амплитуд, представлении матрицы X в качестве эталонного радиометрического изображения контрольного объекта, и последующей математической обработки матриц Y и X с получением матрицы А, являющейся матричным представлением аппаратной функции радиометра. 1 з.п. ф-лы, 6 ил.

Изобретение относится к пассивным двухканальным сканирующим системам наблюдения с двумя приемниками, работающими в оптическом, инфракрасном или миллиметровом диапазонах длин волн. Технический результат направлен на восстановление пропущенных строк и столбцов искомой матрицы изображения с целью восстановления изображения в целом. Способ восстановления изображений заключается в применении оператора восстановления одномерного изображения к массиву данных отдельных строк и столбцов двух матриц наблюдения с последующей интерполяцией и объединением двух изображений в одно восстановленное изображение без пропусков строк и столбцов. 1 табл.

Изобретение относится к пассивным системам радионаблюдений за объектами с помощью двухканального сканирующего радиометра, работающего в миллиметровом диапазоне длин волн, и может быть использовано также в оптических системах инфракрасного диапазона. Технический результат направлен на повышение точности восстановления и разрешающей способности изображения объектов в двухканальной радиометрической системе, работающей с повышенным шагом сканирования по углу места. Способ формирования изображений заключается в разном порядке сканирования антенн по угловым координатам с последующей совместной обработкой полученных в двух измерительных каналах двух матриц измерения, в результате чего формируется матрица изображений объектов с повышенной разрешающей способностью по угловым координатам. 1 табл.

Изобретение относится к радиотеплолокации, а именно к радиотеплолокационным системам наблюдения за объектами с помощью сканирующего радиометра, а также может быть использовано в радиолокации, радиоастрономии и в оптико-электронных системах. Достигаемый технический результат - нахождение аппаратной функции по методу наименьших квадратов (МНК) при восстановлении изображений объектов. Способ восстановления изображений при неизвестной аппаратной функции заключается в умножении вектора наблюдений на матрицу весовых коэффициентов, вычисляемую предварительно на основе МНК-оценок аппаратной функции, найденных для эталонного изображения.

Изобретение относится к радиотеплолокации, а именно к радиотеплолокационным системам наблюдения за объектами с помощью радиометра со сканирующей по азимуту и углу места антенной. Достигаемый технический результат направлен на восстановление изображений объектов при шаге сканирования антенны радиометра по углу места, большем, чем шаг дискретизации искомого изображения. Указанный результат достигается за счет того, что формируют расширенную матрицу наблюдений путем интерполяции недостающих строк с последующей обработкой расширенной матрицы в частотной области с помощью восстанавливающего фильтра, что позволяет получать неискаженное изображение объектов. 4 ил.

Изобретение относится к радиолокации, а именно к бортовым радиолокационным системам наблюдения за земной поверхностью на базе доплеровской радиолокационной станции (РЛС) с четырехэлементной антенной решеткой. Достигаемый технический результат - формирование трехмерного изображения поверхности в зоне видимости РЛС в виде совокупности пространственных координат отражающих элементов поверхности с повышенной точностью определения координат и расширением зоны видимости РЛС. Способ формирования трехмерного изображения земной поверхности в бортовой четырехканальной доплеровской РЛС заключается в определении пространственных координат отражающих элементов поверхности, расположенных в элементах разрешения дальности и доплеровской частоты, и основан на совместном применении селекции по доплеровской частоте и фазового метода измерения координат. 4 табл.

Изобретение относится к радиолокации, а именно к бортовым радиолокационным системам (РЛС) наблюдения за земной поверхностью на базе доплеровской радиолокационной станции с линейной антенной решеткой. Достигаемый технический результат - формирование трехмерного изображения поверхности в зоне видимости РЛС в виде совокупности пространственных координат отражающих элементов поверхности при меньшем числе каналов обработки и для более широкой диаграммы направленности антенны. Способ заключается в определении пространственных координат отражающих элементов поверхности, расположенных в элементах разрешения дальности и доплеровской частоты, и основан на совместном применении селекции по доплеровской частоте и амплитудного метода измерения координат. 4 табл.

Изобретение относится к радиолокации, а именно к радиолокационным станциям (РЛС) наблюдения за воздушной обстановкой, работающим в режиме узкополосной доплеровской фильтрации. Технический результат направлен на однозначное измерение угловых координат обнаруженных воздушных целей в зоне видимости движущейся доплеровской РЛС. Указанный результат достигается за счет того, что способ измерения угловых координат воздушных целей с помощью доплеровской РЛС заключается в вычислении угловых координат обнаруженных в элементах разрешения дальности целей на основе доплеровских частот, измеренных в каждой паре приемных элементов, расположенных определенным образом на антенне.

Изобретение относится к бортовым радиолокационным системам наблюдения за земной поверхностью и воздушной обстановкой, работающим в режиме реального луча на базе плоской антенной решетки. Достигаемый технический результат - формирование трехмерного изображения объектов отражения в зоне обзора с применением экономичной двухэтапной процедуры повышения разрешающей способности антенной решетки по угловым координатам. Указанный результат достигается за счет того, что способ формирования трехмерного изображения земной поверхности и воздушной обстановки с помощью антенной решетки заключается в последовательном сканировании зоны обзора со смещением луча антенны на ширину диаграммы направленности и формировании при каждом положении луча трехмерного изображения объектов отражения за счет двухэтапной обработки матрицы комплексных измерений, принятых в каналах антенной решетки, позволяющей оценить амплитуды поля отражения в угловых элементах дискретизации зоны видимости антенны во всех элементах разрешения дальности и получить пространственные координаты всех отражающих элементов в зоне обзора. 1 ил.

Изобретение относится к радиолокации, а именно к бортовым радиолокационным системам наблюдения за земной поверхностью (радиовидению) на базе четырехканальной доплеровской радиолокационной станции с четырехэлементной антенной решеткой. Достигаемый технический результат - измерение координат элементов земной поверхности при формировании трехмерного изображения поверхности в зоне видимости РЛС. Сущность заявленного способа заключается в формировании на заданном промежутке времени синтезирования радиолокационного изображения участка земной поверхности в виде совокупности комплексных амплитуд сигналов отражения в элементах разрешения дальности на доплеровских частотах одновременно в четырех измерительных каналах, способ отличается тем, что для каждой четверки амплитуд соответствующих элементов изображений, полученных на одной и той же частоте, моноимпульсным методом измеряют угловые координаты соответствующего элемента поверхности и пересчитывают их в прямоугольные координаты антенной системы.

Изобретение относится к бортовым радиолокационным станциям с фазированной антенной решеткой (ФАР), предназначенным для формирования радиолокационного изображения контролируемого участка земной поверхности и объектов на поверхности в координатах дальность - азимут или угол места - азимут в режиме реального луча при маловысотном полете летательного аппарата - носителя РЛС, также к бортовым радиотеплолокационным станциям, принимающим и усиливающим излученный тепловой сигнал в радиолокационном диапазоне длин волн

Изобретение относится к бортовым радиолокационным станциям с синтезированной апертурой антенны, предназначенным для формирования радиолокационного изображения (РЛИ) контролируемого участка земной поверхности в координатах дальность-азимут по курсу движения летательного аппарата (ЛА) с малой скоростью (маловысотный полет) или с зависшего вертолета

Изобретение относится к бортовым радиолокационным системам радиовидения с синтезированной апертурой антенны, позволяющим формировать радиолокационное изображение (РЛИ) контролируемого участка земной поверхности при боковом, переднебоковом обзоре или при обзоре в передней зоне в координатах дальность-азимут в течение допустимого времени синтезирования Тс

Изобретение относится к системам активной и пассивной радиолокации наблюдения за наземными и воздушными объектами на базе подвижных и неподвижных носителей станций со сканирующими антеннами

Изобретение относится к бортовым системам пассивной и активной радиолокации миллиметрового диапазона, работающим совместно при наблюдении и распознавании неподвижных объектов на поверхности

Изобретение относится к пассивной радиолокации, а именно к радиотеплолокационным станциям (РТЛС) наблюдения за поверхностью и воздушной обстановкой на базе подвижных или неподвижных носителей РТЛС со сканирующими совмещенными по центру антеннами радиометрических каналов с различными характеристиками диаграмм направленности антенн (ДН)

Изобретение относится к системам активной и пассивной радиолокации наблюдения за наземными и воздушными объектами на базе подвижных и неподвижных носителей станций с антенными решетками

Изобретение относится к пассивной и активной радиолокации, а именно к радиотеплолокационным и радиолокационным станциям (РТЛС, РЛС) наблюдения за наземными и воздушными объектами на базе подвижных или неподвижных носителей станций с антенными решетками

Изобретение относится к радиолокации, а именно к радиолокационным системам наблюдения за поверхностью на базе бортовой импульсно-доплеровской радиолокационной станции (РЛС) маловысотного полета

 


Наверх