Патенты автора Гринев Виталий Георгиевич (RU)

Изобретение относится к нанокомпозитам на основе полиэтилена и слоистых силикатов. Нанокомпозит получен путем обработки предварительно дегидратированного монтмориллонита (ММТ) компонентами катализатора, состоящего из соединения переходного металла VCl4 и алюминийорганического соединения Al(i-Bu)3, с последующей полимеризацией этилена на нанесенном катализаторе. Причем полимеризацию in sity проводят на частицах ММТ среднего размера 8 мкм и с межплоскостным расстоянием в частицах 2,46 нм. Сверхвысокомолекулярный полиэтилен в полученном нанокомпозите имеет молекулярную массу не менее 1,5⋅106. При этом нанокомпозит содержит наночастицы монтмориллонита в количестве от 0,7 мас.% до 8,3 мас.% и имеет модуль упругости при растяжении (Ер) не менее 810 МПа, прочность при растяжении (σpp) не менее 35,5 МПа, относительное удлинение при разрыве (εpp) 260-370% и износ по шкурке не более 35,1 мм3. Нанокомпозит обладает высокими значениями деформационно-прочностных характеристик и высокой износостойкостью. 2 н. и 4 з.п. ф-лы, 1 ил., 1 табл., 5 пр.

Изобретение относится к полимерным теплопроводящим электроизоляционным композиционным материалам (КМ) и может быть использовано при изготовлении теплоотводящих элементов, в том числе радиаторов охлаждения, в электротехнических и электронных устройствах различного назначения. Теплопроводящий КМ получен методом полимеризационного наполнения и содержит в качестве полимерной матрицы сверхвысокомолекулярный полиэтилен (СВМПЭ), а в качестве наполнителя частицы гексагонального нитрида бора (h-BN), имеющие слоистую структуру, среднего размера 8 мкм, диспергированные ультразвуковой обработкой до пластинчатых частиц с соотношением длины к толщине l/d не менее 20, в количестве от 40 до 95 мас.%, и имеет: теплопроводность λ|| при измерении в направлении теплового потока, параллельном плоскости приложения силы при прессовании, по меньшей мере 6,0 Вт/м⋅К, теплопроводность λ⊥ при измерении в направлении теплового потока, перпендикулярном плоскости приложения силы при прессовании, по меньшей мере 3,4 Вт/м⋅К, и электропроводность σdc не выше 10-12 Ом-1⋅см-1. Предложенный КМ обладает высокими теплопроводящими и диэлектрическими свойствами в сочетании с хорошими физико-механическими характеристиками. 2 з.п. ф-лы, 2 табл., 7 пр.

Изобретение относится к способу получения композиционного материала на основе сверхвысокомолекулярного полиэтилена (СВМПЭ), обладающего теплопроводящими электроизоляционными свойствами, методом полимеризационного наполнения. Полученный композиционный материал может быть использован при изготовлении теплоотводящих элементов в электротехнических и электронных устройствах различного назначения. В качестве наполнителя в способе используют наночастицы алюминия с поверхностным оксидным слоем или смесь микро- и наночастиц алюминия с поверхностным оксидным слоем, которые вакуумируют при 80-100°C и охлаждают до комнатной температуры. После чего смесь обрабатывают тетрахлоридом ванадия или титана в количестве 10-5-10-4 г на 1 г наполнителя. Через 20-30 мин добавляют углеводородный растворитель, обрабатывают полученную суспензию ультразвуком, повышают температуру до 25-30°C, вводят алюминийорганическое соединение, подают этилен до давления 0,2-0,4 ата и начинают полимеризацию при интенсивном перемешивании. Через 5-6 мин повышают давление этилена до 2-3 ата и температуру до 40-60°C и продолжают полимеризацию этилена на поверхности частиц наполнителя до образования на них покрытия из сверхвысокомолекулярного полиэтилена (СВМПЭ) толщиной 6-150 нм. Способ по изобретению позволяет использовать мелкодисперсные наполнители - вплоть до наноразмерных частиц, обеспечивая равномерное распределение теплопроводящего наполнителя в полимерной матрице, с получением композиционного материала с высокими теплопроводящими и диэлектрическими свойствами при сохранении хороших физико-механических свойств. 3 н. и 2 з.п. ф-лы, 3 табл., 32 пр.

Изобретение относится к технологии получения радиационно-защитного композиционного материала, который может быть использован при изготовлении элементов защиты в различной аппаратуре, применяемой для дефектоскопии, для медицинских целей, для радиоактивного каротажа нефтяных и газовых скважин, в портативных нейтронных генераторах и др

 


Наверх