Патенты автора Жуков Александр Степанович (RU)

Изобретение относится к области авиационного и ракетного двигателестроения и может быть использовано при исследовании рабочих процессов в прямоточных воздушно-реактивных и гибридных ракетных двигателях в условиях стендовых испытаний. Способ заключается в измерении толщины сгоревшего свода цилиндрического канального заряда твердого топлива, размещенного в камере сгорания с сопловым блоком, при подаче нагретого газа с заданными значениями температуры и плотности потока окислителя. Нагрев газа, подаваемого в канал заряда твердого топлива, осуществляют путем смешивания воздуха с продуктами сгорания твердотопливного газогенератора. Зажигание твердого топлива в канале заряда осуществляют продуктами сгорания кольцевой вставки из легковоспламеняемого твердого топлива, установленной со стороны головной части заряда твердого топлива. Измерение толщины сгоревшего свода по длине заряда в процессе горения осуществляют осевым возвратно-поступательным перемещением кольцевого микроволнового резонаторного датчика. Скорость горения твердого топлива, скорость перемещения датчика, расход воздуха, расход продуктов сгорания газогенератора и толщину кольцевой вставки рассчитывают по алгебраическим формулам в соответствии с условиями проведения измерений. Техническим результатом настоящего изобретения является определение скорости горения твердого топлива в потоке нагретого газа по длине заряда в различные моменты времени, расширение температурного диапазона обдувающего газа и надежное зажигание образцов с высокой температурой воспламенения. 2 табл., 2 ил.

Изобретение относится к получению керамических деталей аддитивным нанесением слоев затвердевающей термопластичной суспензии. Используют термопластичную суспензию, содержащую порошок на основе системы диоксид циркония - диоксид иттрия (ZrO2 - Y2O3) и парафин, и/или церезин, и/или воск с добавками поверхностно-активных веществ. Аддитивное нанесение слоев суспензии ведут через коническое конфузорное сопло в подвижной головке с последующим охлаждением, отжигом и спеканием заготовки изделия. Термопластичную суспензию предварительно нагревают до температуры флюидизации, перемешивают до равномерной консистенции и компактируют в виде твердого цилиндрического стержня. Стержень помещают в цилиндрический контейнер и подают под усилием к соединенной с контейнером через кольцевую термоизолирующую прокладку подвижной головке, нагретой до температуры флюидизации термопластичной суспензии. В головке осуществляют послойную флюидизацию стержня. Массовую долю порошка в суспензии и усилие подачи стержня определяют в соответствии с заданными соотношениями. Обеспечивается равномерное распределение частиц оксидов металлов в предварительно компактированном стержне. 3 ил.

Изобретение относится к области измерений в теплофизике, в частности к способам определения интегрального коэффициента излучения поверхности твердых материалов, и может быть использовано при измерении интегрального коэффициента излучения теплозащитных материалов. Способ включает измерение температуры предварительно нагретого цилиндрического образца твердого материала, торцевые поверхности которого покрыты фольгой с высоким коэффициентом отражения, в процессе его остывания в вакууме. Образец предварительно вводят в нагреватель, выполненный в виде соосного с образцом полого цилиндра с электроспиралью накаливания на его внешней поверхности и размещенный в верхней части вакуумированной камеры с зачерненными стенками. После нагрева образца его выводят из нагревателя и измеряют температуру образца в процессе его остывания двумя термопарами, размещенными на оси симметрии образца и на его боковой поверхности. Нагрев образца проводят до температуры его боковой поверхности не менее 500 К. Интегральный коэффициент излучения определяется из решения обратной задачи теплопроводности. Технический результат - повышение точности определения интегрального коэффициента излучения и снижение времени измерения за счет нагрева образца непосредственно в вакуумированной камере, и повышение информативности измерений путем размещения дополнительной термопары. 4 ил., 1 табл.

Изобретение относится к порошковой металлургии, в частности к способам взрывного прессования осесимметричных изделий из порошков. Порошковый материал помещают в осесимметричный контейнер с заглушками на его концах, на боковую поверхность контейнера наматывают детонирующий шнур. Контейнер размещают во взрывной камере, содержащей воздух при атмосферном давлении, и осуществляют взрывное компактирование детонационной волной, распространяющейся по спирали вокруг контейнера путем инициирования детонирующего шнура в его одном конце. Обеспечивается повышение прочности и однородности структуры получаемого изделия. 3 ил., 1 пр.

Изобретение относится к этил (3S,4R,5S)-4-ацетамидо-5-амино-3-(1-этилпропокси)циклогекс-1-ен-1-карбоксилат этоксисукцинату, обладающему противовирусной способностью. Соединение по изобретению получают путем обработки этил (3S,4R,5S)-4-ацетамидо-5-амино-3-(1-этилпропокси)циклогекс-1-ен-1-карбоксилата этоксиянтарной кислотой в среде этилацетата. 2 н.п. ф-лы, 1 табл., 2 пр.

Способ организации рабочего процесса в прямоточном воздушно-реактивном двигателе включает подачу порошка металлического горючего в камеру сгорания, его воспламенение и горение в потоке воздуха из воздухозаборника. Порошок в виде равномерно перемешанной суспензии в сжиженном горючем газе, размещенной в топливном баке, предварительно нагружают давлением вытеснения, нагревают и подают в камеру сгорания через форсунку. Максимальный диаметр частиц порошка, давление вытеснения и температуру нагрева суспензии определяют из защищаемых соотношений. Изобретение направлено на повышение энергетических характеристик и надежности работы прямоточного воздушно-реактивного двигателя. 1 з.п. ф-лы, 2 табл., 2 ил.

Изобретение относится к артиллерийской технике, в частности к ракетным двигателям снарядов, запускаемых из ствола орудия или миномета. Ракетный двигатель активно-реактивного снаряда содержит камеру сгорания с зарядом твердого топлива, сопло, инициатор и сопловую заглушку. В критическом сечении сопла установлена прорывная мембрана. Заглушка состоит из основания, крышки и закрепленного на основании полого цилиндрического стакана с перфорированным дном со стороны мембраны, установленной в критическом сечении сопла. В основании заглушки и дне стакана выполнены соосные отверстия, в которых установлен шток с возможностью его продольного перемещения. Шток имеет заостренный наконечник со стороны мембраны, коническое утолщение со стороны основания заглушки, сопряженное с конической выемкой в основании, и срезаемый фланец, зажатый между основанием и крышкой заглушки. На штоке внутри стакана закреплена консоль, а между дном стакана и консолью установлена цилиндрическая пружина, охватывающая шток. Пиротехнический инициатор состоит из навески основного воспламенителя, размещенной между дном стакана и мембраной, и не менее двух каплюлей-воспламенителей, установленных на основании заглушки и сопряженных с ударниками, закрепленными на консоли. Крышка сопловой заглушки расположена в выходном сечении сопла и закреплена при помощи завальцовки с его внешней стороны, а в центральной части крышки выполнено отверстие, диаметр которого равен диаметру конического утолщения штока. Величина свободного объема камеры сгорания определяется алгебраическим выражением, защищаемым настоящим изобретением. Изобретение позволяет обеспечить надежное автономное воспламенение заряда твердого топлива, не зависящее от воздействия пороховых газов метательного заряда и сброса давления при вылете сопловой заглушки. 4 ил., 1 табл.
Изобретение относится к получению упрочненного нанокомпозиционного материала, который может быть использован в авиастроении и в автомобильной промышленности. Готовят лигатуру в виде компактированных стержней из равномерно перемешанной смеси порошка магния и нанопорошка нитрида алюминия с диаметром частиц в диапазоне 30÷80 нм. Полученные стержни вводят в расплав матрицы на основе магния с обеспечением содержания нанопорошка нитрида алюминия в получаемом нанокомпозиционном материале 1±0,2 мас.% и выдерживают при температуре расплава матрицы в течение не менее 35 мин при одновременном воздействии на расплав ультразвуком интенсивностью 20÷25 Вт/см2 и частотой колебаний 17÷19 кГц. Обеспечивается увеличение предела прочности при растяжении более чем в два раза с одновременным увеличением пластичности полученного материала. 1 пр.

Изобретение относится к области порошковой металлургии и может быть использовано для получения металлических порошков. Эжекционная форсунка для распыления расплавов содержит корпус с кольцевой щелью для подачи горячего сжатого газа, ниппель с защитным чехлом и центральным каналом для подачи расплава. На выходной кромке защитного чехла выполнены вырезы полукруглой формы радиусом r=(0,5÷1,0) мм, расположенные на равных расстояниях друг от друга. Минимальное количество вырезов nmin=2, а максимальное nmax=πR/2r, где R - радиус выходной кромки защитного чехла, мм. Обеспечивается повышение мелкодисперсной фракции в пульверизате. 2 ил., 3 табл., 1 пр.
Изобретение относится к бору и его соединениям, а именно к способам синтеза диборида алюминия, являющегося перспективным энергетическим материалом для ракетных топлив. Диборид алюминия получают высокотемпературной обработкой смеси порошков бора и алюминия в инертной атмосфере путем приготовления смеси порошка алюминия с размером частиц не более 0,01 мм, с порошком бора с размером частиц не более 0,001 мм при атомном соотношении компонентов от 1:2,05 до 1:2,1; формирования из полученной смеси брикетов с максимальным размером не более 22 мм и минимальным размером не менее 2 мм и пористостью не более 44%; последующего помещения брикетов в атмосферу нейтрального газа; нагревания их до температуры 100-500°С; зажигания нагретой смеси путем локального нагрева части ее поверхности до температуры 950-1150°С; и синтеза диборида алюминия в режиме послойного горения при температуре 820-920°С. Изобретение позволяет при минимальном расходе электроэнергии получать практически однофазный продукт, содержащий более 95 масс. % AlB2. 1 пр.

Изобретение относится к области порошковой металлургии, в частности к способу получения трехмерных керамических изделий. Техническим результатом является повышение технологичности процесса изготовления и расширение номенклатуры изделий. Технический результат достигается способом получения трехмерных керамических изделий, включающим последовательное нанесение слоев затвердевающего материала через сопло в подвижной головке. В качестве материала используют термопластичную суспензию, предварительно нагретую до температуры в диапазоне 70-90 °C. В качестве термопластичной суспензии используют смесь порошков оксида алюминия с термопластичной связкой - парафин и воск. Подачу нагретой термопластичной суспензии осуществляют через коническое конфузорное сопло с полууглом раствора θ=15° под давлением. При этом реализуют быстрое охлаждение слоев затвердевающего материала, полученную заготовку отжигают при температуре 1000-1200 °C в течение не менее 1 часа, затем проводят спекание заготовки при температуре 1700-1800 °C с изотермической выдержкой в течение не менее 1 часа. 6 ил., 1 пр.

Изобретение относится к области арматуростроения и предназначено для использования при транспортировке газов по магистральным газопроводам. Автомат аварийного закрытия крана магистрального газопровода содержит две соединенные с газопроводом управляющие камеры, сообщающиеся между собой через калиброванные отверстия. Соединенная с гидроприводом запорного органа газопровода выходная камера разделена на две полости разрывной мембраной. Имеются балластная и аварийная емкости, соединенные с газопроводом через обратные клапаны. Подвижный шток с конусообразной головкой расположен вблизи мембраны. Управляющие камеры разделены первым сильфоном, размещенным соосно внутри цилиндрического корпуса и жестко закрепленным на его нижней крышке. Верхний свободный конец сильфона герметично закрыт пластиной с калиброванными отверстиями и с закрепленным на ней центральным штоком с возможностью его осевого перемещения при продольной деформации сильфона. Центральная часть штока закреплена на пластине, герметично закрывающей нижний свободный конец второго сильфона, жестко закрепленного на перегородке с центральным отверстием, установленной в корпусе. Средние диаметры первого D1 и второго D2 сильфонов находятся в определенном неравенстве. Суммарная площадь сечения калиброванных отверстий определяется алгебраическим соотношением. Изобретение направлено на повышение надежности работы автомата и долгосрочности его эксплуатации. 2 табл., 2 ил.

Изобретение относится к области ракетной техники, в частности к конструкциям гибридных ракетных двигателей космического назначения. Гибридный ракетный двигатель содержит камеру сгорания с размещенным в ней зарядом твердого топлива с внутренним сквозным каналом и сопловой блок. Во входном сечении заряда размещена форсунка для подачи окислителя в канал заряда. Заряд твердого топлива содержит горючие и окислительный компоненты, причем массовая доля окислительного компонента в заряде монотонно увеличивается по его длине в направлении соплового блока в соответствии с уравнением, включающим характеристики заряда и компонентов топлива гибридного ракетного двигателя. Изобретение позволяет повысить удельный импульс тяги двигателя. 4 ил., 8 табл.

Изобретение относится к получению упрочненных легких сплавов на основе алюминия. В расплав алюминиевого сплава при температуре 750÷800ºС вводят 6 мас.% порошка криолита Na3AlF6, через промежуток времени не менее 10 мин в расплав вводят 5÷6 мас.% модификатора при одновременной активации расплава в течение не менее 20 мин механическим перемешиванием и/или воздействием ультразвуковых колебаний частотой 10 кГц, и/или воздействием электромагнитного поля частотой 40 Гц. В качестве модификатора используют перемешанную до однородного состояния смесь, состоящую из 20 мас.% нанопорошка титана, 5 мас.% нанопорошка углерода и 75 мас.% порошка криолита. Обеспечивается повышение прочности и износостойкости дисперсно-упрочненных сплавов за счет образования in situ наночастиц карбида титана, равномерно распределенных в алюминиевой матрице. 1 ил., 1 пр.

Изобретение относится к новому химическому веществу - 4-(3,4-дибромтиофенкарбонил)-2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекану, обладающему анальгетической активностью. А также к способу его получения, который заключается в ацилировании 2,6,8,12-тетраацетил-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,03,11,05,9]додекана хлорангидридом 3,4-дибромтиофенкарбоновой кислоты. 2 н.п. ф-лы, 1 табл., 2 пр.

Изобретение относится к области порошковой металлургии. Струю металлического расплава диспергируют окружающим ее концентрическим потоком распыляющего газа с наложением звуковых колебаний. Звуковые колебания создают посредством не менее двух одинаковых упругих прямоугольных пластин, расположенных в потоке распыляющего газа параллельно его оси и закрепленных по их ширине. Частоту звуковых колебаний определяют по заданной формуле, затем с учетом полученного ее значения, упругих свойств материала пластин и при заданной длине и ширине определяют толщину пластин из заданного уравнения. Обеспечивается повышение доли мелкодисперсной фракции в пульверизате, образующемся при распылении расплава металла. 2 ил., 1 пр.

Изобретение относится к порошковой металлургии, а именно к получению порошка распылением расплава металла. Форсунка содержит корпус с кольцевой щелью для подачи газа, ниппель с центральным каналом для подачи расплава и защитный стальной чехол, ниппель изготовлен из пьезоэлектрического материала, поляризованного в радиальном направлении, а защитный стальной чехол электрически изолирован от корпуса форсунки. К стальному чехлу и корпусу форсунки подключен источник переменного электрического напряжения с заданной частотой. Обеспечивается повышение массовой доли высокодисперсной фракции в пульверизате и повышение надежности работы форсунки. 1 ил., 1 пр.

Изобретение относится к области порошковой металлургии. Устройство для распыления расплавленных металлов содержит корпус с крышкой и кольцевой полостью, соединенной с газопроводом для подачи нагретого сжатого газа, ниппель с центральным каналом для подачи расплава металла и дополнительный газопровод, соединенный с кольцевой полостью посредством золотникового клапана, содержащего вращающийся золотник, и цилиндрического сопла. Вращающийся золотник выполнен с полукруглыми вырезами, равномерно расположенными по его окружности. Давление в дополнительном газопроводе и диаметр цилиндрического сопла определены математическими формулами. Обеспечивается повышение массовой доли высокодисперсной фракции в пульверизате. 3 ил., 1 пр.

Изобретение относится к области измерения характеристик аэрозольных частиц оптическими методами. Способ заключается в измерении ослабления оптического излучения в видимой и ближней инфракрасной областях спектра. Максимальный размер и концентрацию аэрозольных частиц определяют по формулам , , где Dmax - максимальный диаметр частиц, мкм; Cm - массовая концентрация частиц, кг/м3; ρ - плотность материала частиц, кг/м3; l - оптическая длина пути, м; λ∗, - координаты точки выхода на асимптоту функции , мкм; τ(λ) - измеренная спектральная оптическая плотность; α*(λ) - зависимость от длины волны значения параметра дифракции α=νπD/λ, соответствующего абсциссе точки начала отклонения функции Q(α) от функции Qp(α); Q(α) - фактор эффективности ослабления, рассчитанный по точным формулам теории Ми для заданных зависимостей показателя преломления n(λ) и показателя поглощения æ(λ) материала аэрозольных частиц; - фактор эффективности ослабления для релеевского рассеяния. Техническим результатом является повышение точности определения характеристик субмикронных частиц. 4 ил.

Изобретение относится к области порошковой металлургии, в частности к способам получения порошков распылением расплавленных металлов газовым потоком. Распыление проводят путем диспергирования расплава металла подаваемым через кольцевое сопло внешним потоком сжатого газа, концентричным струе расплава. В поток газа вводят твердые частицы дисперсной фазы с образованием двухфазного потока со среднемассовым диаметром частиц дисперсной фазы D43<0,1 h, с температурой плавления материала частиц, превышающей температуру плавления распыляемого металла, и с расходом частиц дисперсной фазы и газа, выбранным по соотношению: Gp/Gg=(0,01÷0,05), где D43 - среднемассовый диаметр частиц дисперсной фазы, h - ширина щели кольцевого сопла для подачи распыляющего двухфазного потока, Gp, Gg - массовые секундные расходы частиц дисперсной фазы и несущего газового потока. Твердые частицы дисперсной фазы отделяют от пульверизата в процессе центробежной классификации. Использование изобретения позволяет повысить долю мелкодисперсной фракции в пульверизате, образующемуся при распылении расплава металла. 1 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к методам исследования жидкокапельных аэрозолей и предназначено для определения дисперсных характеристик распыла форсунок в широком диапазоне размеров частиц, в том числе нанометровом. Способ основан на распылении раствора неиспаряемой примеси в исследуемой жидкости с последующим дисперсным анализом частиц сухого остатка. Распыление раствора определенной концентрации проводят в герметичной камере с заданными условиями по концентрации паров исследуемой жидкости. Для повышения скорости получения контрольных образцов пробоотбор осуществляют при прокачивании выдержанного в камере аэрозоля через электрофильтр на осадительные электроды. Полученный положительный эффект, подтвержденный экспериментально измерением дисперсности ультразвукового распылителя, заключается в возможности восстанавливать реальную функцию распределения капель в факеле форсунки по функции распределения частиц их солевого остатка. Техническим результатом изобретения является расширение диапазона измеряемых частиц, а также повышение точности и информативности существующих методик исследования. 4 ил.

Изобретение относится к области ракетной техники, а именно к организации процесса подготовки и сжигания газообразного топлива в камере сгорания
Изобретение относится к металлургии, в частности к получению легких сплавов на основе алюминия

Изобретение относится к области фотокаталитической очистки воздуха и может быть использовано на предприятиях химической и других отраслей промышленности, а также при ликвидации последствий террористических актов
Изобретение относится к области металлургии, а именно к литым композиционным материалам на основе алюминиевых сплавов
Изобретение относится к области технической керамики и огнеупоров и может быть использовано для изготовления изделий, применяемых в электротехнике, машиностроении, химической, металлургической и других отраслях промышленности

Изобретение относится к области электрохимического определения состава вещества, а более конкретно к устройствам для экспрессного определения окисленности жидкой стали, и может быть использовано в черной металлургии для контроля процессов выплавки, раскисления, легирования и разливки
Изобретение относится к производству огнеупорных изделий, в частности к изготовлению твердых электролитов из порошков тугоплавких соединений, и может быть использовано в электротехнике и металлургических отраслях промышленности

 


Наверх