Патенты автора Борисов Сергей Владимирович (RU)

Изобретение относится к прокатному производству, в частности к термической обработке мелющих шаров из стали, содержащей, мас.%: С 0,61-0,66, Mn 0,80-0,90, Si 0,60-0,65, Al менее 0,070, P менее 0,015, S менее 0,020, Cr 0,60- 0,70, Ni 0,15-0,30, Cu менее 0,040, V 0,01-0,12, Mo 0,04-0,06, N менее 0,010, H менее 0,0003, Fe - остальное. Способ включает прокатку при температуре 950-1050°С, охлаждение шаров, закалку и последующий отпуск. После прокатки шаров подстуживают до температуры 740-830°С, затем шары подвергают закалке в закалочной среде, при этом длительность закалки регулируют в зависимости от диаметра шаров: для шаров с условным диаметром 100 мм от 3,0 до 4,5 мин, для шаров условным диаметром 110-120 мм от 3,5 мин до 6,0 мин, а последующий отпуск шаров производят при длительности выдержки от 160 до 320 мин при температуре 140-260°С. Технический результат заключается в повышении эксплуатационной стойкости шаров, получении мелющих шаров с условным диаметром 100 и 110-120 мм, с объемной твердостью, характеризующейся 5 группой твердости по ГОСТ 7524-2015, при этом с низким градиентом (снижением значения твердости от поверхности к центру шара) в масштабах производства. 2 н. и 1 з.п. ф-лы, 3 ил., 2 табл.

Изобретение относится к применению олигоэфиракрилата ((((1-(2-(3-((((1-(аллилокси)-3-хлорпропан-2-ил)окси)((1-хлор-3-(метакрилоилокси)пропан-2-ил)окси)фосфат)окси)-4-хлорбутокси)-3-хлорпропокси)-3-хлорпропан-2-ил)окси)фосфатдиил)бис(окси))бис(3-хлорпропан-2,1-диил)бис(2-метилакрилата) в качестве олигомера для получения термо- и теплостойких полимеров с пониженной горючестью. Технический результат - расширение арсенала полимеризационноспособных олигомеров для получения термо- и теплостойких полимеров с пониженной горючестью. 1 табл., 2 пр.

Изобретение относится к полимеризационноспособным олигомерам, в частности применению олигоэфиракрилата ((((1-(4-(2-(4-(3-(4-(2-(4-(2-((((1-(аллилокси))-3-хлорпропан-2-ил)окси)((1-хлор-3-(метакрилоилокси)пропан-2-ил)окси)фосфато)окси)-3-хлорпропокси)фенил)пропан-2-ил)фенокси)-2-гидроксипропокси)фенил)пропан-2-ил)фенокси)-3-хлорпропан-2-ил)окси)фосфатдиил)бис(окси))бис(3-хлорпропан-2,1-диил)бис(2-метилакрилата) в качестве олигомера для получения термо- и теплостойких полимеров с пониженной горючестью. Технический результат: расширение арсенала полимеризационноспособных олигомеров для получения термо- и теплостойких полимеров с пониженной горючестью. 1 табл., 2 пр.

Изобретение относится к полимеризационноспособным олигомерам, в частности применению олигоэфиракрилата ((((1-хлор-3-(4-(2-(4-(3-(4-(2-(4-(3-хлор-2-((((1-хлор-3-(метакрилоилокси)))пропан-2-ил)окси)((1-хлор-3-феноксипропан-2-ил)окси)фосфато)окси)пропокси)фенил)пропан-2-ил)фенокси)-2-гидроксипропокси)фенил)пропан-2-ил)фенокси)пропан-2-ил)окси)фосфатдиил)бис(окси))бис(3-хлорпропан-2,1-диил)бис(2-метилакрилата) в качестве олигомера для получения термо- и теплостойких полимеров с пониженной горючестью. Технический результат: расширение арсенала полимеризационноспособных олигомеров для получения термо- и теплостойких полимеров с пониженной горючестью. 1 табл., 2 пр.

Настоящее изобретение относится к применению олигоэфиракрилата ((((1-хлор-4-((1-хлор-3-(3-хлор-2-((((1-хлор-3-(метакрилоилокси)пропан-2-ил)окси)((1-хлор-3-феноксипропан-2-ил)окси)фосфат)пропокси)пропан-2-ил)окси)бутан-2-ил)окси)фосфатдиил)бис(окси))бис(3-хлорпропан-2,1-диил)бис(2-метилакрилата) в качестве олигомера для получения термо- и теплостойких полимеров с пониженной горючестью. Технический результат - расширение арсенала полимеризационно-способных олигомеров для получения термо- и теплостойких полимеров с пониженной горючестью. 1 табл., 2 пр.
Изобретение относится к созданию материалов пониженной горючести из эпоксидиановой смолы, которые могут быть использованы в качестве самостоятельных композитов и в качестве связующих, для создания полимерных композиционных материалов общего и специального назначения. Предложен способ получения композитов пониженной горючести на основе эпоксидиановой смолы, при котором эпоксидиановую смолу ЭД-20 смешивают с фосфатным модификатором и отвердителем аминного типа и отверждают полученную композицию, при этом в качестве модификатора используют предварительно полученную смесь 1-3,5 масс.ч. ортофосфорной кислоты, 0,1-0,35 масс.ч. гидрофосфата аммония и 0,01-0,04 масс.ч. алюминия, в качестве отвердителя используют триэтилентетрамин, а введение модификатора, отвердителя и отверждение полученной композиции осуществляют при комнатной температуре, при следующем соотношении компонентов, масс.ч.: ЭД-20 - 100,00, модификатор - 1,11-3,89, триэтилентетрамин - 10,0. Технический результат - упрощение способа получения композитов пониженной горючести, позволяющий получить композиты с улучшенными физико-механическими характеристиками. 3 табл., 5 пр.
Изобретение относится к области материалов пониженной горючести на основе эпоксидиановой смолы, которые могут быть использованы в качестве самостоятельных композитов и в качестве связующих для создания полимерных композиционных материалов общего и специального назначения. Технический результат достигается в способе получения связующего на основе эпоксидиановой смолы, предназначенного для изготовления композитов пониженной горючести, при котором эпоксидиановую смолу смешивают с фосфатным модификатором и отвердителем аминного типа и отверждают полученную композицию, при этом в качестве модификатора используют предварительно полученную смесь 28 моль ортофосфорной кислоты и 1 моль алюминия, в качестве отвердителя используют триэтилентетрамин, а введение модификатора, отвердителя и отверждение полученной композиции осуществляют при комнатной температуре, при следующем соотношении компонентов, масс.ч.: ЭД-20 - 100,00, модификатор - 1,11-3,89, триэтилентетрамин - 10,0. Заявленный способ получения связующего на основе эпоксидиановой смолы, предназначенного для изготовления композитов пониженной горючести, позволяет изготовить композиты с улучшенными физико-механическими характеристиками и расширить области применения указанных композитов. 3 табл., 5 пр.

Изобретение относится к способу производства мелющих шаров из стали, содержащей, мас.%: С 0,58-0,63; Mn 0,80-0,90; Si 0,75-0,80; Al менее 0,060; P менее 0,015; S менее 0,020; Cr 0,75-0,80; Ni 0,20-0,25; Cu 0,15-0,30; V 0,01-0,12; Mo 0,03-0,05; N менее 0,020; H менее 0,0003; Fe – остальное, при этом способ включает подстуживание шаров до температуры 740-830 °С, затем шары подвергают закалке в закалочной среде, при этом длительность закалки регулируют в зависимости от диаметра шаров: для шаров с условным диаметром 100 мм от 3,0 до 4,5 мин, для шаров условным диаметром 110-120 мм от 3,5 до 6,0 мин, а последующий отпуск шаров производят при длительности выдержки от 160 до 320 мин при температуре 140-260 °С. Технический результат заключается в повышении эксплуатационной стойкости шаров с объемной твердостью, характеризующейся 5 группой твердости по ГОСТ 7524-2015, и при этом с низким градиентом (снижением значения твердости от поверхности к центру шара) в масштабах производства. 1 з.п. ф-лы, 3 ил., 2 табл.

Изобретение относится к способу термической обработки мелющих шаров из стали, содержащей мас.%: С 0,75-0,80; Mn 0,80-0,90; Si 0,25-0,35; Al менее 0,020; P менее 0,015; S менее 0,020; Cr 0,35- 0,40; Ni 0,15-0,25; Cu менее 0,030; V 0,10-0,15; Mo менее 0,05; N менее 0,015; H менее 0,0003, Fe - остальное. Способ включает производство шаров с условным диаметром 60-80 мм, при этом осуществляют прокатку шаров, последующее подстуживание шаров до температуры от 750 до 830°С, закалку шаров в закалочной среде с выдержкой в течение от 2,5 мин до 3,5 мин и последующим отпуском при температуре от 140 до 250°С и временем выдержки в течение от 160 до 240 мин. Технический результат заключается в повышении эксплуатационной стойкости шаров, получении мелющих шаров условным диаметром 60-80 мм с объемной твердостью, характеризующейся 5 группой твердости по ГОСТ 7524-2015 в масштабах производства. 2 з.п. ф-лы, 2 табл., 1 ил.

Изобретение относится к способам механических испытаний, в частности к способу испытания мелющих шаров. Заявленный способ испытания мелющих шаров на ударную стойкость включает комплексное испытание 2-х испытуемых шаров, многократно соударяющихся между собой на протяжении всего времени испытания, при этом в процессе испытания первый шар 1 находится в гнезде нижнего стационарного удерживающего устройства 3, а второй шар 2 находится в гнезде верхнего подвижного удерживающего устройства 4, которое приводится в движение непосредственно гидравлическим или пневматическим плунжером, при этом второй шар 2 одновременно с верхним удерживающим устройством 4 поднимается на заданную высоту и затем опускается, при этом происходит соударение верхнего шара 2 о нижний шар 1, затем цикл процесса повторяется с частотой от 60 до 450 ударов в минуту в зависимости от типа используемой ударной установки. Техническим результатом предлагаемого изобретения является преждевременное выявление дефектных партий мелющих шаров при испытании на ударную стойкость за счет более точной имитации соударения шаров, при работе в шаровых мельницах при измельчении руд и прочих материалов, при помощи многократного взаимного соударения пары шаров на протяжении всего времени испытания на пневматической (гидравлической) ударной установке, что позволяет оценить возможность разрушения шаров, прошедших испытания на ударную вязкость, в условиях усталости металла. 1 з.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к способу производства мелющих шаров из стали, содержащей, мас.%: С 0,75-0,80, Mn 0,80-0,90, Si 0,25-0,35, Al менее 0,020, P менее 0,015, S менее 0,020, Cr 0,35- 0,40, Ni 0,15-0,25, Cu менее 0,030, V 0,10-0,15, Mo 0,03-0,05, N менее 0,015, H менее 0,0003, Fe – остальное. Способ включает производство шаров с условным диаметром 80-100 мм, после прокатки шары подстуживают до температуры 740-800°С, закалку шаров производят в закалочной среде с выдержкой в течение от 3,0 до 4,0 мин, а последующий отпуск проводят при температуре 180-260°С и времени выдержки в течение от 180 до 320 мин, при этом после отпуска проводят самоотпуск с временем выдержки в течение от 12 до 48 часов. Способ включает производство шаров с условным диаметром 110-140 мм, после прокатки шары подстуживают до температуры 740-800°С, закалку шаров производят в закалочной среде с выдержкой в течение от 3,5 мин до 5,0 мин, а последующий отпуск проводят при температуре 180-260°С и времени выдержки от 180 до 320 мин, при этом после отпуска проводят самоотпуск с временем выдержки в течение от 12 до 48 часов. Технический результат заключается в повышении эксплуатационной стойкости шаров, получении мелющих шаров с объемной твердостью, характеризующейся 5 группой твердости по ГОСТ 7524-2015 в масштабах производства. 2 н. и 4 з.п. ф-лы, 2 ил., 2 табл., 1 пр.
Изобретение относится к прокатному производству, в частности к термической обработке мелющих шаров из стали, содержащей, мас.%: С 0,71-0,75; Mn 0,90-1,00; Si 0,25-0,35; Al менее 0,010; P менее 0,015; S менее 0,010; Cr 0,40-0,45; Ni 0,10-0,14; Cu менее 0,020; V 0,08-0,12; Mo менее 0,010; Ti менее 0,015; H менее 0,0003; железо - остальное. Способ включает прокатку шаров или нагрев шаров при температуре 950-1050°С, последующее подстуживание до температуры 750-820°С, закалку шаров в закалочной среде и последующий отпуск шаров. Длительность закалки регулируют в зависимости от диаметра шаров: для шаров с условным диаметром 15-35 мм от 1,0 до 2,0 мин, для шаров с условным диаметром 40-50 мм от 1,5 до 3,0 мин, а для шаров с условным диаметром 60-80 мм от 2,5 до 3,5 мин. Последующий отпуск шаров производят при длительности выдержки от 140 до 280 мин. Отпуск шаров с условным диаметром 15-35 мм осуществляют при температуре 150-190°С, а шаров с условным диаметром 40-80 мм при температуре 160-220°С. Изобретение направлено на повышение эксплуатационной стойкости шаров, получение мелющих шаров с объемной твердостью, характеризующейся 5 группой твердости по ГОСТ 7524-2015 в масштабах производства. 2 з.п. ф-лы, 2 табл., 1 пр.
Настоящее изобретение относится к композиции для получения жесткого пенополиуретана пониженной горючести. Композиция включает 50,0-55,0 мас.ч. простого полиэфирполиола с молекулярной массой 4000, 80,0-100,0 мас.ч. оксипропилированного пентаэритритового эфира метилфосфоновой кислоты, 5,0-15,0 мас.ч. основного фосфата меди, 50,0 мас.ч. полифосфата меламина или полифосфата аммония, 67,5-86,5 мас.ч. полиизоцианата, 1,0-2,0 мас.ч. воды, 0,8-1,0 мас.ч. диметилэтаноламина и 0,8-1,0 мас.ч. 10 мас.% раствора дибутилдилаурата олова в уайт-спирите. Полученные жесткие пенополиуретаны обладают повышенной прочностью на сжатие и пониженной теплопроводностью, а также стабильным комплексом свойств в течение продолжительного времени, и могут быть использованы при изготовлении теплоизоляционных материалов, применяемых в строительстве, транспортных средствах и др. 2 з.п. ф-лы, 2 табл., 10 пр.

Настоящее изобретение относится к способу получения полидивинилфосфиновой кислоты из красного фосфора и ацетилена и может быть использовано в химической промышленности. Предложенный способ получения полидивинилфосфиновой кислоты из красного фосфора и ацетилена в системе гидроксид калия/ДМСО при нагревании отличается тем, что реакцию с красным фосфором проводят при атмосферном давлении в токе ацетилена при температуре 105-115°С в течение 3 ч, без добавления воды в реакционную смесь и при мольном соотношении реагентов красный фосфор : полугидрат гидроксида калия : ДМСО, равном 0.10 : 0.154 : 2.11. Предложен новый усовершенствованный способ получения фосфорорганического полимера, позволяющий увеличить выход целевого продукта. 9 пр.

Настоящее изобретение относится к способу изготовления полимер-мономерной композиции, которая может использоваться для получения неокрашенных оптически прозрачных материалов с пониженной горючестью и высокой адгезией к силикатным стеклам. Описан способ получения фотополимеризующейся композиции, включающий смешение фосфорхлорсодержащего диметакрилата, растворителя гидроксиалкил(мет)акрилата, термопластичного полимера - поливинилбутираля, гомогенизацию полученной смеси и введение в нее перед отверждением фотоинициатора 2-гидрокси-2-метил-1-фенил-1-пропанона, отличающийся тем, что смесь готовят последовательным смешением фосфорхлорсодержащего диметакрилата с поливинилбутиралем и последующим введением растворителя, а гомогенизация композиции ведется под действием СВЧ-излучения частотой 2,45 ГГц в течение 20-60 секунд. Технический результат заключается в ускорении способа получения фотополимеризующейся композиции при сохранении ее свойств. 2 з.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к области спорта и, в частности, к конструкции спортивно-рекреационного сооружения в виде поля для гольфа (гольф-поле). Сущность изобретения заключается в том, что в поле для гольфа, на котором расположено традиционное количество лунок, содержащих набор детерминированных элементов - ти, грины, фервеи и преграды, по меньшей мере, одно ти находится в пределах стандартного игрового расстояния минимум до двух гринов, образуя тем самым новые лунки, создающие новые маршруты прохождения поля, соответствующие всем установленным игровым стандартам. Технический результат изобретения состоит в том, что при наличии традиционного количества одних и тех же элементов, на гольф-поле появляется возможность создания разных полноценных маршрутов, что существенно повышает вариативность игры и способствует снижению затрат на его строительство. 3 ил., 3 табл.

Изобретение относится к технологии ионно-плазменного напыления и может быть использовано для изготовления фильтрующих элементов, применяемых в медицине, а также химической, металлургической и горнодобывающей отраслях промышленности. Способ ионно-плазменного напыления металла катода на полимерную пленку включает очистку поверхности полимерной пленки, оснастки и стенок рабочей камеры и осаждение функционального покрытия на упомянутую полимерную пленку, при этом полимерную пленку с натяжением размещают на наружной поверхности полого барабана, полость которого используют для циркуляции среды, охлаждающей полимерную пленку при очистке и осаждении функционального покрытия. Полимерную пленку размещают на наружной поверхности полого барабана с натяжением при помощи натяжных стержней. Очистку полимерной пленки, оснастки и стенок рабочей камеры проводят при токе разряда 30-60А низкотемпературной аргоновой плазмы и при перемотке полимерной пленки, намотанной на вращающийся приводной стержень, на другой вращающийся приводной стержень через наружную поверхность неподвижного барабана с постоянным натяжением и со скоростью 1 см/мин. После полной перемотки полимерной пленки с одного приводного стрежня на другой очистку повторяют до тех пор пока давление в рабочей камере не установится равным (1-4)⋅10-4 мм рт. ст., затем без выключения упомянутой плазмы зажигают дугу на расходуемом катоде и наносят функциональное покрытие при поддержании электрического потенциала на барабане в диапазоне от 0 до -250 В и при температуре полимерной пленки в диапазоне 50°C + 150°C. Устройство для ионно-плазменного напыления металла катода на полимерную пленку содержит рабочую камеру для ионно-плазменного напыления, установленные в ней источники плазмы, размещенный в ней полый металлический барабан, на наружной поверхности которого с натяжением размещена полимерная пленка с возможностью перемещения при очистке ее поверхности, оснастки и стенок рабочей камеры в среде низкотемпературной аргоновой плазмы и при осаждении на полимерную пленку функционального покрытия, при этом полимерная пленка перемещается перед металлическим расходуемым катодом. Устройство также содержит два приводных стержня, выполненных с возможностью вращения, на одном из которых намотана полимерная пленка, и два свободно вращающихся стержня, снабженные стопорным устройством для обеспечения необходимого натяжения полимерной пленки относительно наружной поверхности неподвижного полого барабана. Обеспечивается направленный синтез функциональных покрытий большого формата, заданного состава и структуры с контролируемым уровнем примесей кислорода и хорошей адгезией. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области медицины, в частности к способам получения костных имплантов на основе титана с биоактивным покрытием. Для этого на пористую основу, содержащую титан, наносят 12-14% водную суспензию гидроксиапатита (ГАП) в течение 2-3 сек. Затем материал помещают в 2-3%-ную водную суспензию ГАП и импрегнируют в вакууме при 2·10-10÷9·10-10 мм рт. ст. в трех-пятикратном пульсационном режиме. Соотношение между длительностью импульса и паузы составляет от 3-5 до 10-15. Изобретение обеспечивает технологически простой способ получения биомедицинского материала на основе пористого титана, позволяющий достичь равномерного и прочного покрытия во всем объеме пор материала и сохранить биологическую активность ГАП. 1 ил., 4 пр.

Изобретение относится к промышленности пластмасс, в частности к разработке реакционно-способных фотополимеризующихся композиций, и может быть использовано для получения неокрашенных оптически прозрачных материалов с пониженной горючестью и высокой адгезией к силикатным стеклам. Фотополимеризующаяся композиция включает термопластичный полимер, растворитель, диметакриловое соединение и фотоинициатор. Отличается тем, что в качестве термопластичного полимера содержит поливинилбутираль, в качестве растворителя гидроксиалкил(мет)акрилат, выбранный из группы - 2-гидроксиэтилметакрилат, 2-гидроксиэтилакрилат, 2-гидроксипропилметакрилат или 2-гидроксипропилакрилат, в качестве диметакрилового соединения фосфорхлорсодержащий диметакрилат, а в качестве фотоинициатора 2-гидрокси-2-метил-1-фенил-1-пропанон, при следующем соотношении компонентов, мас.ч. :поливинилбутираль 1-10, гидроксиалкил(мет)акрилат 10-60, фосфорхлорсодержащий диметакрилат 30-80, 2-гидрокси-2-метил-1-фенил-1-пропанон 1-2. Технический результат - получение неокрашенных оптических прозрачных полимерных материалов с высокой адгезией к силикатным стеклам и пониженной горючестью. 1 табл., 7 пр.

Группа изобретений относится к области медицины. Описан биосовместимый пористый материал, содержащий никелид титана с пористостью 90-95% и открытой пористостью 70-80% со средним размером пор 400 мкм, который пропитан гидроксиапатитом в количестве 26-46 мас.% от массы никелида титана. Описан также способ получения биосовместимого пористого материала, включающий предварительную ионную обработку поверхности высокопористого ячеистого никеля, помещенного на планетарный механизм поворотного стола установки ионно-плазменного напыления, в низкотемпературной плазме в атмосфере аргона при токе разряда 40-45 А при постепенном увеличении отрицательного потенциала на поворотном столе от 100 до 1000 B в течение 80-90 мин, последующее электродуговое напыление путем осаждения ионов титана на поверхность никеля с использованием расходуемого катода, выполненного из титана, при отрицательном потенциале 0,9-1,2 кВ между планетарным механизмом и корпусом рабочей камеры при токе катода 75-80 А, с последующим установлением при достижении температуры 700°C потенциала на планетарном механизме 300-350 B и выдержкой 20-60 мин, охлаждение полученного продукта при давлении (5-7)·10-5 мм рт.ст. в течение 100-120 мин, а затем введение в него гидроксиапатита путем 3-9-кратной вакуумной пропитки 10-12%-ной суспензией гидроксиапатита с размером частиц менее 1 мкм при давлении 1·10-1÷8·10-1 с последующей сушкой на воздухе. Биосовместимый пористый материал обладает наряду с высокой пористостью также высокой биологической активностью за счет наличия в его составе гидроксиапатита, имеющего высокие остеозамещающие свойства. 2 н.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к двигателестроению, в частности к системам производства, распределения и очистки углеводородного топлива, и может быть использовано для повышения качества как стандартного, так и некондиционного топлива. Техническим результатом предлагаемого изобретения является расширение класса обрабатываемого углеводородного топлива, а также повышение экологических показателей топлива. Способ обработки углеводородного топлива для двигателей внутреннего сгорания включает подачу топлива из емкости, перемешивание топлива с водой, диспергирование и гомогенизацию водно-топливной смеси, перекачивание полученной смеси в бак-отстойник, разделение ее и последующую подачу очищенного топлива в двигатель внутреннего сгорания. Подачу очищенного топлива потребителю осуществляют из бака-отстойника с уровня 0,85h, когда температура потребителя - tпот. меньше его оптимальной температуры - tопт., т.е. tпот.<tопт., и с уровня 0,5h при условии, когда tпот.≥tопт., где h - высота уровня топлива в баке-отстойнике, при этом же условии продукты очистки, образующиеся на дне бака-отстойника, утилизируют путем сжигания в камере сгорания потребителя. 1 ил.

Изобретение относится к двигателестроению, в частности к системам производства, распределения и очистки углеводородного топлива, и может быть использовано для повышения качества как стандартного, так и некондиционного топлива
Изобретение относится к области медицины

Изобретение относится к способу изготовления фильтрующих элементов и поворотному приспособлению для его осуществления
Изобретение относится к битумным эмульсиям, используемым в дорожном строительстве
Изобретение относится к промышленности строительных материалов, к получению модификатора для полимерно-битумных вяжущих, применяемых в дорожном и гражданском строительстве для устройства дорог, герметизации швов автодорожного полотна, аэродромов, спортивных площадок; устройства кровли и гидроизоляции строительных конструкций, а также мостовых сооружений; в лакокрасочной промышленности

Изобретение относится к области наземного обслуживания воздушных судов, в частности к устройствам их транспортировки и эвакуации
Изобретение относится к вяжущим для дорожного покрытия и может быть использовано в дорожном и аэродромном строительстве, а также в строительстве кровель, гидроизоляций и герметичных швов
Изобретение относится к строительным материалам и может быть использовано в качестве кровельных материалов, для защиты металлических, бетонных и других оснований, а также для герметизации швов в дорожном строительстве
Изобретение относится к строительным материалам и может быть использовано в качестве кровельных материалов, для защиты металлических, бетонных и других оснований, а также для герметизации швов в дорожном строительстве

 


Наверх