Патенты автора Беспалов Александр Валентинович (RU)

Гранулирующий шнековый пресс относится к устройствам переработки методом проходного прессования высококонцентрированных полидисперсных композиций, в том числе трехфазных, с повышенной вязкостью, ограниченным запасом сдвиговой прочности, низкой адгезионной способностью, и может быть использован в различных отраслях промышленности. Гранулирующий шнековый пресс включает корпус, шнек и многоканальный пресс-инструмент, на внутренней поверхности которого, обращенной к потоку массы и повторяющей форму хвостовика шнека, изготовлены формующие каналы с сужающимися заходными частями любой формы фигуры вращения соосно с цилиндрическими частями, под разными углами к центральной оси пресс-инструмента в направлении вращения шнека в плоскостях, касательных аксиальным сечениям пресс-инструмента в центрах формующих каналов. Углы наклона каналов увеличиваются по мере их удаления от центрального канала с нулевым углом наклона. Внешняя поверхность пресс-инструмента с выходными отверстиями каналов изготовлена в виде выпуклого сегмента сферы, углы наклона осей цилиндрических частей каналов отличаются от углов наклона осей сужающихся заходных частей каналов и вместе они увеличиваются по мере удаления каналов от центрального канала с нулевыми углами наклона обеих осей. Изобретение обеспечивает повышение качества изготовляемой продукции по гранулометрическому составу, плотности, механической прочности и пористости, увеличение средней производительность пресса на 2-6%, а также уменьшение на 1-3% потери массы и энергии за счет уменьшения количества вынужденных остановов пресса при потере устойчивости процесса формования. 10 ил.

Изобретение относится к устройствам переработки методом проходного прессования высококонцентрированных полидисперсных композиций и может быть использовано в различных отраслях промышленности. Гранулирующий шнековый пресс включает шнек, многоканальный пресс-инструмент и корпус, содержащий втулку. На внутренней поверхности втулки изготовлены рифы сноповидной формы с широким трапециевидным основанием на дне рифа и наружной расширяющейся частью со скругленными боковыми стенками и регулируемым радиусом сопряжения. В рифах размещены съемные упругие вкладыши, изготовленные без полостей, однополостные или многополостные с постоянной или переменной площадью сечения полостей в поперечном и/или в продольном направлении. Технический результат: увеличение удерживающей способности рифов за счет расширения интервала изменения упругости вкладышей, сокращение количества вынужденных остановок пресса из-за срыва массы с рифов, расширение допустимого интервала формуемости различных по составу и физико-механическим свойствам перерабатываемых полидисперсных композиций на том же гранулирующем шнековом прессе, снижение затрат за счет легковыполнимой оперативной замены комплекта упругих вкладышей без замены рифленой втулки при обслуживании и переналадке пресса для формования различных композиций. 4 ил., 2 пр.
Изобретение относится к области химической технологии керамических высокопористых ячеистых материалов-носителей катализаторов, сорбентов и других массообменных устройств и предназначено для использования в технологических процессах химической, нефтехимической, атомной отраслей, металлургии, энергетики и транспорта, а также при решении экологических проблем по очистке газовых и жидких сред от вредных веществ. Способ получения керамических высокопористых блочно-ячеистых материалов включает пропитку полиуретановой матрицы ячеистой структуры шликером, состоящим из инертного наполнителя - электроплавленного корунда, дисперсного порошка высокоглиноземистой фарфоровой массы и упрочняющей добавки, сушку, обжиг и нанесение методом пропитки с последующим прокаливанием активной композиции. Активную композицию наносят в виде суспензии с массовым соотношением твердой фазы к жидкой 40÷50/60÷50%, при этом твердую фазу получают смешением каолина с цеолитом НЦВМ или NH4ЦВМ типа пентасил в соотношении 10÷19/90÷81 мас.%, а жидкой фазой является дистиллированная вода. После нанесения каждого слоя активной композиции проводят сушку материала при температуре 80÷90°С в течение 2÷8 ч, а после нанесения последнего слоя осуществляют термообработку в среде водяного пара с расходом 100-400 г/ч при температуре 760÷800°С не менее 1 ч. Технический результат изобретения - повышение удельной поверхности гидрофобного цеолитового активного слоя до 420-460 м2/г и повышение сорбционной емкости по органическим соединениям (0,10-0,12 г/см3 для паров толуола) при снижении до минимума сорбционной емкости по воде (0,01 г/см3) в динамических условиях при р/рs=0,1 в пересчете на активный слой, что позволяет применять полученные высокопористые материалы во влажной среде. 3 пр.
Предлагаемое изобретение относится к области обращения с радиоактивными отходами и облученным ядерным топливом и предназначено для улавливания радиоактивного йода и его соединений из газовой фазы в системах вентиляции и в системах йодной очистки атомных электростанций. Керамический высокопористый блочно-ячеистый сорбент представляет собой пористую основу из корундового блочного высокопористого ячеистого материала с размером ячейки 0,5-1,2 мм, с открытой пористостью от 85 до 90% и с активной подложкой из γ-оксида алюминия, нанесенного в количестве до 6,5 мас.%, пропитанную сорбционно-активным компонентом - азотнокислым серебром - до суммарного содержания AgNO3, равного 8-18 мас.%. Технический результат изобретения - повышение механической прочности в процессах эксплуатации и регенерации сорбента, его химической и коррозионной стойкости в агрессивных средах, увеличение пористости и объемной поверхности. Полученные керамические сорбенты обеспечивают в исследованном интервале температур (170-210оС) и расходов воздушного потока (12-600 л/час) эффективность очистки от CH3 131I с концентрацией в воздухе 3,6-290 мг/м3 в интервале 99,92-99,97%, что соответствует требованиям, предъявляемым к йодным сорбентам по коэффициенту очистки от радиойода, - не менее 103. Приведенные характеристики керамических высокопористых блочно-ячеистых сорбентов позволяют повысить производительность и уменьшить в несколько раз размеры аппаратов газоочистки, продлить срок эксплуатации сорбентов, повысить эффективность использования дорогостоящего серебра. 4 пр.
Изобретение относится к области химической технологии керамических высокопористых ячеистых материалов. Технический результат изобретения заключается в повышении удельной поверхности активного слоя. Полиуретановую матрицу ячеистой структуры пропитывают керамическим шликером, состоящим из инертного наполнителя - электроплавленного корунда, дисперсного порошка оксида алюминия или высокоглиноземистого фарфора и раствора поливинилового спирта. Проводят сушку, обжиг и наносят водную суспензию, содержащую 40-50 мас.% твердой фазы следующего состава: цеолит NaX - 70-80 мас.%, каолин - 30-20 мас.%. После нанесения каждого слоя активной композиции проводят сушку материала при температуре 80÷90°С в течение 2÷8 ч, а после нанесения последнего слоя - термообработку при температуре 550÷650°С в течение не менее 3 ч.
Изобретение относится к области химической технологии керамических высокопористых ячеистых материалов и предназначено для использования в процессах улавливания паров цезия при остекловывании высокоактивных отходов, высокотемпературной переработке облученного ядерного топлива, в производстве цезиевых источников ионизирующего излучения. Способ получения керамических блочно-ячеистых фильтров-сорбентов для улавливания газообразного радиоактивного цезия включает пропитку полиуретановой матрицы ячеистой структуры шликером, состоящим из инертного наполнителя - электроплавленного корунда, дисперсного порошка оксида алюминия и раствора поливинилового спирта, сушку и обжиг. на полученную корундовую матрицу со средним размером ячейки 0,5-1,5 мм наносят методом многократной пропитки и термообработки в интервале температур 600-700ºС сорбционно-активную композицию из смеси алюмозоля и кремнезоля, взятых в соотношении оксидов алюминия и кремния 30-35:70-65 мас.%, с добавлением 0,3-0,8 мас.% поливинилового спирта по отношению к сухому веществу композиции. Количество композиции составляет 21-45 мас.% от массы матрицы. Керамический блочно-ячеистый фильтр-сорбент радиоактивного цезия имеет открытую пористость 85-90 об.%, предел прочности при сжатии 2,5-4,0 МПа, удельную поверхность сорбционно-активного слоя 300-360 м2/г. В результате процесса хемосорбции на полученных фильтрах-сорбентах образуются устойчивые кристаллические алюмосиликаты цезия: CsAlSiO4 (кальсилит) и CsAlSi2O6 (поллуцит), сорбционная емкость составляет 0,16-0,32 г Cs2O/г фильтра-сорбента. Технический результат изобретения - повышение сорбционной емкости фильтра. 4 пр.

Изобретение относится к измерениям расхода реверсируемого многофазного потока. Устройство измерения расхода многофазного потока состоит из одновинтовой машины, винт которой является движителем для равномерного подвода дозированного количества механической энергии в реверсируемый многофазный поток и одновременно чувствительным элементом устройства измерения. Режим измерения поддерживается двухконтурной системой автоматического управления, внутренний (исполнительный) контур которой в составе электродвигателя, тахометра и частотного преобразователя изменяет направление и скорость вращения винта для синхронизации с объемным расходом многофазного потока. Внешний (задающий) контур в составе датчика дифференциального давления, датчика осевых усилий винта на опорные подшипники, датчиков температуры, контроллера и блока математического моделирования формирует задание по направлению и скорости вращения винта, синхронизированной с направлением и объемным расходом многофазного потока. Регистратор используют для хранения и выдачи по запросу измеренных параметров и рассчитанных в блоке математического моделирования значений объемного и массового расхода многофазного потока, его плотности и направления движения. Технический результат - измерение параметров, расчет, хранение и выдача по запросу объемного и массового расхода, плотности и направления движения реверсируемого многофазного потока, уменьшение погрешности измерения, увеличение метрологически обоснованного интервала измерения, повышение чувствительности, надежности и достоверности результатов измерения и вычисления, а также расширение интервала применения устройства по составу, в том числе фракционному, и физико-механическим свойствам многофазного потока. 1 ил.
Изобретение относится к керамическому катализатору окисления водорода. Данный катализатор состоит из носителя и активной части, содержащей каталитически активный металл - платину, и получен обработкой, подготовкой и пропиткой носителя. При этом в качестве носителя используют корундовый блочный высокопористый ячеистый материал с промежуточным покрытием из γ-Al2O3. Предлагаемый катализатор обладает высокой каталитической активностью и улучшенными газодинамическими характеристиками. 9 пр.
Изобретение относится к способу получения высокопористого носителя катализатора. Данный способ включает пропитку ретикулированного пенополиуретана керамическим шликером, содержащим инертный наполнитель, включающий электрокорунд, дисперсный порошок оксида алюминия с добавками, и раствор поливинилового спирта, сушку и обжиг с получением высокопористой блочно-ячеистой матрицы, обработку полученной высокопористой блочно-ячеистой матрицы алюмозолем, ее сушку, прокаливание и охлаждение с получением пористого носителя. При этом после охлаждения осуществляют обработку поверхности пористого носителя водным раствором блочного водорастворимого сополимера двух мономеров, первый из которых имеет по меньшей мере одну карбоксильную группу, а второй имеет по меньшей мере одну сульфогруппу, при этом концентрация сополимера в водном растворе составляет от 0.1 до 10 мас.%, а молекулярная масса сополимера составляет от 2 кДа до 20 кДа. Предлагаемый способ позволяет повысить рабочие характеристики носителя катализатора, заключающиеся в увеличении удельной площади поверхности и смачиваемости пор носителя суспензией, содержащей наночастицы каталитически активного вещества. 6 з.п. ф-лы, 2 пр.
Изобретение относится к способу приготовления катализатора для окисления водорода, состоящего из носителя с промежуточным покрытием из γ-оксида алюминия и активной части, содержащей каталитически активный металл - палладий. Предложенный способ включает обработку, подготовку и пропитку носителя с промежуточным покрытием солевым раствором активной фазы. При этом носитель готовят из ретикулированного пенополиуретана путем пропитки керамическим шликером, содержащим инертный наполнитель - электроплавленный корунд, дисперсный порошок оксида алюминия с добавками оксидов магния и титана и раствор поливинилового спирта (ПВС), подсушивают при температуре 100…120°С, обжигают при температуре 1470…1510°С. Затем полученную керамическую высокопористую блочно-ячеистую матрицу последовательно пропитывают раствором алюмозоля в количестве до 10,0 мас.% от массы носителя, подсушивают при температуре 100…120°С и прокаливают в воздушной среде при температуре 550…600°С, охлаждают, обрабатывают раствором хлористого палладия с содержанием палладия 1,5…4,0 г/л, сушат при температуре не более 120°С, прокаливают при температуре 450…500°C в воздушной среде, восстанавливают в токе молекулярного водорода до образования каталитического слоя в виде металлического палладия с массовым содержанием не более 1,0 мас.% при температуре 60…85°С. Предлагаемый способ позволяет получать катализаторы, обладающие высокой активностью в процессе окисления водорода, а также снизить температуру их эксплуатации. 4 пр.
Изобретение относится к нефтехимическому синтезу, в частности к каталитическому жидкофазному способу гидрирования 2',4',4-тринитробензанилида (ТНБА) с получением ароматических полиаминосоединений, нашедших широкое применение как промежуточные продукты в производстве красителей, термостойких полимеров, синтезе высокопрочных волокон и т.д. Способ получения катализатора для жидкофазного гидрирования 2',4',4-тринитробензанилида включает пропитку полиуретановой матрицы ячеистой структуры шликером, содержащим более 30 мас.% α-оксида алюминия с последующей подсушкой при температуре 100…120°C, прокалку при температуре 1050…1070°С, последующую пропитку полученного высокопористого ячеистого носителя алюмозолем (γ-Аl2O3), сушку при температуре 100…120°С, прокалку при температуре 550…600°C, последующую пропитку водным раствором нитратов кобальта и железа под вакуумом при комнатной температуре, прокалку при 350…400°C, а после прокаливания нанесение углеродных нанотрубок, полученных пиролизом метана при температуре не более 800°C, до 0,15…0,20% мас.% от массы носителя с γ-Аl2O3. затем обработку раствором нитрата палладия, сушку при температуре не более 120°C и прокалку при температуре 430…450°C, восстановление полученного оксида палладия на носителе молекулярным водородом в азоте до металлического палладия при температуре 50…55°C. Технический результат заключается в уменьшении продолжительности реакции, увеличении скорости реакции за счет увеличения удельной поверхности катализатора, нагрузки ТНБА на катализатор, выхода целевого продукта. 4 пр.
Изобретение относится к способу получения катализатора селективного гидрирования органических соединений, который включает пропитку ретикулированного пенополиуретана шликером, содержащим более 30% мас. α-оксида алюминия с последующей подсушкой при температуре 100…120°C, прокалку при температуре 1050…1070°С, последующую многократную пропитку полученного высокопористого ячеистого носителя растворами алюмозоля до 6…10% мас., от массы носителя, сушку при температуре 100…120°С, прокалку при температуре 550…600°С, обработку раствором нитрата палладия, сушку при температуре не более 120°С и прокалку при температуре 450…500°C, восстановление полученного оксида палладия на носителе молекулярным водородом в азоте до металлического палладия с массовым содержанием не более 0,5% мас. при температуре 50…55°С, поверхность которого затем модифицируют наночастицами палладия радиационно-химическим методом. Технический результат заключается в увеличении срока службы катализатора, исключении стадии фильтрации целевого продукта от катализатора и получении чистого целевого продукта. 4 пр.
Изобретение относится к составу шихты для высокопористого керамического материала с сетчато-ячеистой структурой для носителей катализаторов, состоящему из инертного наполнителя - электроплавленного корунда и дисперсной фазы с упрочняющей добавкой. При этом для повышения прочности материала в качестве дисперсной фазы используют высокоглиноземистую фарфоровую массу, в качестве упрочняющей добавки - композицию из MgO+SiC, обеспечивающую образование фазы эвтектического состава в системе MgO-SiO2 при обжиге в интервале температур 1250-1300°С со следующим соотношением компонентов: электроплавленный корунд - 5-20 мас.%, высокоглиноземистая фарфоровая масса - 76,5-90 мас.%, упрочняющая добавка MgO+SiC - 3,5-5 мас.%. Использование указанного состава позволяет изготавливать высокопористые прочные керамические материалы с сетчато-ячеистой структурой с повышенной механической прочностью на сжатие при сохранении общей объемной открытой пористости. 3 пр.

Способ измерения расхода многофазного потока основан на том, что в поток транспортируемой среды движителем вносят дозированное количество механической энергии, компенсирующее потери энергии потока на участке измерения, при этом поступательная, вращательная или любая другая скорость движителя, синхронизированная с объемным расходом транспортируемой среды, является первичным сигналом при измерении расхода. Устройство измерения расхода многофазного потока состоит из одновинтовой машины, винт которой является движителем для равномерного подвода дозированного количества механической энергии в многофазный поток и одновременно чувствительным элементом устройства измерения, причем первичный контур регулирования скорости вращения винта для синхронизации с объемным расходом транспортируемой среды состоит из тахометра, частотного преобразователя и контроллера, а вторичный задающий контур управления в составе датчика дифференциального давления, датчиков температуры, блока математического моделирования и регистратора расхода используют для управления скоростью вращения винта, а также расчета и фиксации объемного и массового расхода транспортируемой среды и ее плотности. Технический результат - уменьшение погрешности измерения, увеличение метрологически обоснованного интервала измерения расхода транспортируемой среды, повышение надежности и достоверности результатов измерения. 2 н.п. ф-лы, 1 ил.

Гранулирующий шнековый пресс может быть использован в различных отраслях промышленности, например, в химической (производство катализаторов, сорбентов и т.д.), пищевой (производство полупродуктов и сухих концентратов), сельскохозяйственной (производство комбикормов, макрокапсулированных семян), деревоперерабатывающей, строительных материалов, машиностроения и других. Гранулирующий шнековый пресс для переработки высококонцентрированных полидисперсных композиций с повышенной вязкостью, ограниченным запасом сдвиговой прочности, низкой адгезионной способностью состоит из корпуса, содержащего размещенные в корпусе втулку с рифами трапециевидной формы узким основанием наружу и заполненными упругими вкладышами на ее внутренней поверхности, шнек и многоканальный пресс-инструмент. Втулка гранулирующего шнекового пресса повышает устойчивость формования различных высокодисперсных композиций без изменения конструкции рифленой втулки, т.е. уменьшению количества вынужденных остановов пресса из-за срыва массы с рифов в наиболее напряженном аксиальном сечении - зазоре между ребордой шнека 3 и рифленой втулкой корпуса. Подбор упругих вкладышей по твердости и упругости позволяет значительно расширить допустимый интервал формуемости различных по составу и физико-механическим свойствам перерабатываемых высокодисперсных композиций. 5 ил.

Гранулирующий шнековый пресс относится к устройствам переработки высококонцентрированных полидисперсных композиций с повышенной вязкостью методом проходного прессования и может быть использовано в различных отраслях промышленности. Гранулирующий шнековый пресс включает корпус, шнек и многоканальный пресс-инструмент, на внутренней поверхности которого, обращенной к потоку массы, изготовлены формующие каналы с сужающимися заходными частями. Сужающиеся заходные части периферийных формующих каналов, расположенные в углублении многоканального пресс-инструмента в переходной части между внутренней поверхностью корпуса и многоканальным пресс-инструментом образуют сложную геометрическую поверхность. Внутренняя поверхность пресс-инструмента, обращенная к потоку массы, повторяет форму хвостовика шнека, а формующие каналы изготовлены с сужающимися заходными частями любой формы фигуры вращения соосно с цилиндрическими частями под различными углами к центральной оси пресс-инструмента в направлении вращения шнека в плоскостях, касательных аксиальным сечениям пресс-инструмента в центрах формующих каналов. Углы наклона каналов увеличиваются по мере их удаления от центрального канала с нулевым углом наклона. Изобретение позволяет уменьшить потери энергии при формовании, а также снизить брак в полученных гранулах. 4 ил.

Гранулирующий шнековый пресс для формования катализаторных паст относится к области экструзионного формования высококонцентрированных дисперсных, преимущественно жестких паст с получением зерен различных типоразмеров в технологии катализаторов, сорбентов, а также может быть использован в других отраслях промышленности: химической, пищевой и др. Гранулирующий шнековый пресс включает корпус, шнек и пресс-инструмент с многоканальными формующими каналами, оси которых расположены под углом 9-16° к оси шнека. Формующие каналы в пресс-инструменте целесообразно выполнить с использованием сменных полимеркомпозитных мундштуков. Предложенный гранулирующий шнековый пресс позволяет повысить механическую прочность отформованных гранул на раздавливание по образующей в 1,2-1,5 раза по сравнению с известным техническим решением. 1 з.п. ф-лы, 2 ил., 5 пр.
Изобретение относится к способам очистки сульфатного скипидара от сернистых соединений
Изобретение относится к химической технологии высокопористых керамических изделий с ячеистой структурой, которые могут использоваться в качестве носителей катализаторов жидкофазных процессов, фильтров, насадки для массо- и теплообменных процессов, высокотемпературных теплоизоляционных материалов и т.д
Изобретение относится к области химической технологии керамических высокопористых ячеистых материалов и предназначено для использования в процессах обращения с газообразными радиоактивными отходами (ГРО) и отработанным ядерным топливом (ОЯТ) на АЭС и радиохимических предприятиях атомной отрасли
Изобретение относится к химико-технологическим процессам, например к нефтехимическому синтезу, в частности к каталитическому жидкофазному способу гидрирования 2',4',4-ТРИНИТРОБЕНЗАНИЛИДА (ТНБА) с получением ароматических полиаминосоединений, нашедших широкое применение как промежуточные продукты в производстве красителей, термостойких полимеров, синтезе высокопрочных волокон и т.д
Изобретение относится к улучшенному способу каталитического жидкофазного гидрирования 2',4',4-тринитробензанилида (ТНБА)
Изобретение относится к каталитическим жидкофазным процессам, а именно к приготовлению катализатора для использования его в технологии получения продуктов из природных смол, например канифоли, в частности к модифицированию живичной канифоли
Изобретение относится к нефтеперерабатывающей и нефтехимической отраслям промышленности и может быть использовано, в частности, в производстве катализатора для процесса каталитической гидроочистки (обессеривания) бензиновых фракций, например прямогонного бензина
Изобретение относится к химико-технологическим процессам, в частности к каталитическому жидкофазному способу гидрирования 2 ,4 ,4-тринитробензанилида (ТНБА) с получением ароматических полиаминосоединений
Изобретение относится к химико-технологическим процессам, в частности к каталитическому жидкофазному способу гидрирования 2',4',4-тринитробензанилида (ТНБА) с получением ароматических полиаминосоединений
Изобретение относится к способу жидкофазного каталитического алкилирования ароматических аминов, которое может быть использовано в производстве антидетонационных добавок к моторным топливам (бензинам)

 


Наверх