Патенты автора Калягин Юрий Александрович (RU)

Изобретение относится к стационарным способам определения теплопроводности твердого тела и может быть использовано в строительстве и теплоэнергетике для проведения в натурных условиях теплофизических исследований теплоизоляционных материалов, установленных на трубопроводах круглого сечения. Сущность способа заключается в нагреве твердого тела цилиндрической формы контактным способом с помощью трубопровода с движущимся внутри него теплоносителем. По известному массовому расходу и температуре теплоносителя определяют его скорость и режим течения. По известной скорости, режиму течения теплоносителя и предварительно заданной температуре внутренней поверхности трубопровода определяют коэффициент теплоотдачи между теплоносителем и внутренней поверхностью трубопровода. По известной температуре наружной поверхности твердого тела, измеренной контактным или бесконтактным измерителем температуры, и окружающей среды определяют коэффициент теплоотдачи между наружной поверхностью твердого тела и окружающей средой. По уравнению теплопередачи для двухслойной цилиндрической стенки при стационарном тепловом режиме определяют коэффициент теплопроводности твердого тела. Технический результат - повышение точности определения коэффициента теплопроводности твердого тела цилиндрической формы при стационарном тепловом режиме. 4 ил.

Изобретение предназначено для комплексного определения основных теплофизических свойств твердого тела и может применяться в строительстве и теплоэнергетике. Устройство состоит из источника инфракрасного излучения, твердого тела и системы охлаждения твердого тела, работающей с помощью вентиляционных отверстий на крышке устройства и перфорированной перегородки. Источник инфракрасного излучения осуществляет бесконтактное тепловое воздействие на переднюю лицевую поверхность твердого тела. Температуру твердого тела регистрируют термопреобразователи в период нагрева. Плотность теплового потока регистрирует преобразователь плотности теплового потока. По результатам построения температурного поля твердого тела в период нагрева и дифференциальному уравнению теплопроводности определяют коэффициент температуропроводности твердого тела. В период стационарного теплового режима твердого тела по величине плотности теплового потока, значениям температуры на передней и задней лицевых поверхностях твердого тела и уравнению теплопроводности для плоской стенки при стационарном тепловом режиме определяют коэффициент теплопроводности твердого тела. По найденным коэффициентам температуропроводности и теплопроводности твердого тела расчетным способом определяют коэффициент удельной (объемной, массовой) теплоемкости твердого тела. Технический результат - повышение точности определения основных теплофизических свойств твердого тела. 2 н.п. ф-лы, 7 ил.

Изобретение относится к области тепловых измерений и может быть при изучении особенностей нестационарного теплового режима, нахождении теплового баланса и определении теплофизических показателей твердых материалов различного предназначения. Сущность заявленного способа заключается в формировании нестационарного теплового режима твердого тела с помощью бесконтактного неразрушающего теплового воздействия на переднюю лицевую поверхность твердого тела источником инфракрасного излучения. Температурное состояние твердого тела регистрируют в фиксированных точках координатного пространства по схеме: в толще твердого тела при y=0 и z=0 на участке x∈[0, δ], где δ - толщина твердого тела, в точках в количестве N+1 с координатами x=0, δ/N, 2δ/N, …, (N-1)δ/N, δ; на поверхностях твердого тела при x=0 и x=δ в координатах, удовлетворяющих условиям |y|≤(0,9÷0,95)a и z≤(0,8÷0,9)b, где a и b - геометрические характеристики поверхностей твердого тела. На основании экспериментальных данных строят нестационарное температурное поле твердого тела по пространственно-временным координатам. Технический результат - повышение точности получаемых данных. 7 ил., 1 табл.

Изобретение относится к нестационарным способам определения теплопроводности сыпучих материалов и может применяться при изучении термических свойств почв, рыхлых горных пород, сыпучих строительных и прочих дисперсных материалов. Сущность способа заключается в предварительном нагреве до требуемой температуры металлической пластины и ее последующем погружении в слой сыпучего материала, расположенного в опытной площадке, которая изнутри покрыта слоем теплогидроизоляции. Контроль за равномерным нагревом металлической пластины до требуемой температуры осуществляют бесконтактным способом с помощью инфракрасного термометра. Нижняя кромка металлической пластины заточена под углом 45°. Термопреобразователи, установленные в сыпучем материале и в толще металлической пластины по центру, регистрируют с определенной дискретностью и продолжительностью во времени тепловые режимы нагрева сыпучего материала и охлаждения металлической пластины. С учетом измеренных параметров рассчитывают коэффициент теплопроводности сыпучего материала. Технический результат: повышение точности измерения коэффициента теплопроводности сыпучего материала при нестационарном тепловом режиме. 5 ил.

Изобретение относится к черной металлургии, в частности к способам охлаждения слябов на машинах непрерывной разливки заготовок криволинейного типа

 


Наверх