Патенты автора Савенков Юрий Семенович (RU)

Изобретение относится к области управления газотурбинными двигателями, в частности к способам защиты газотурбинных двигателей от перегрева на запуске. Способ защиты турбины газотурбинного двигателя от перегрева на запуске заключается в том, что осуществляют измерение температуры газов за турбиной газотурбинного двигателя ТТ с помощью термопар с открытым спаем и с помощью термопар с закрытым спаем, формирование предельного значения температуры газов за турбиной на запуске ТТУСТ зап, сравнение температуры газов ТТ, измеренной с помощью термопар с открытым спаем, с предельным значением ТТУСТ зап, кратковременное прекращение подачи топлива GТ в камеру сгорания двигателя на запуске при превышении ТТ, измеренной с помощью термопар с открытым спаем, величины ТТУСТ зап, включение на заданное время агрегата зажигания, возобновление пониженной подачи топлива GТ в камеру сгорания после снижения температуры газов ТТ, измеренной с помощью блока термопар с открытым спаем, ниже предельного значения ТТУСТ зап, при этом дополнительно для каждого типа газотурбинного двигателя заранее определяют разницу А между значениями температуры газов ТТ на запуске, измеренной с помощью термопар с открытым спаем и с помощью термопар с закрытым спаем, кроме того, в процессе запуска газотурбинного двигателя определяют исправность термопар с открытым спаем, в случае выявления отказа термопар с открытым спаем измерение температуры газов на запуске осуществляют с помощью термопар с закрытым спаем, при этом уменьшают предельное значение температуры газов на запуске ТТУСТ зап на величину А, равную 50…150°С, а прекращение подачи топлива GТ в камеру сгорания двигателя осуществляют на время превышения измеренной с помощью термопар с закрытым спаем ТТ на запуске над величиной ТТУСТ зап - А. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области авиационного двигателестроения и может быть использовано в САУ ГТД для различных типов летательных аппаратов. Изобретение также может быть применено в САУ газотурбинных установок для электростанций, нагнетателей магистральных газопроводов, силовых газотурбинных установок морских и речных судов и т.д. В способе автоматической защиты газотурбинного двигателя от возникновения неустойчивой работы компрессора, предусматривающем измерение параметра давления за компрессором Рк*, измерение параметра частоты вращения ротора высокого давления nвд, измерение параметра давления на входе в двигатель Рвх*, формирование сигнала «помпаж» с последующим выключением подачи топлива в камеру сгорания и включением перепуска воздуха в компрессоре, снятие сигнала «помпаж» после устранения помпажа, формирование сигнала на включение подачи топлива в камеру сгорания, дозирование топлива в камеру сгорания газотурбинного двигателя по закону управления приемистостью вд/Рвх* = const, где - первая производная по времени параметра nвд, дополнительно измеряют параметр расхода топлива Gт в камере сгорания, при этом в процессе приёмистости осуществляют ограничение дозируемого расхода топлива в камере сгорания согласно зависимости Gт/Рк* = f(), где =, - приведенная частота вращения ротора высокого давления, Твх* - температура воздуха на входе в газотурбинный двигатель, а закрытие клапанов перепуска компрессора осуществляют при достижении заданных значений параметров в процессе приёмистости. Таким образом с оптимальным быстродействием осуществляется плавное, без чрезмерных забросов топлива надежное восстановление тяги газотурбинного двигателя после срабатывания защиты от помпажа компрессора. 1 ил.

Изобретение относится к области авиационного двигателестроения, в частности к способам автоматического управления ГТД с применением реверса тяги. Способ включения реверсивного устройства газотурбинного двигателя при посадке самолета, заключающийся в том, что электронным регулятором газотурбинного двигателя регулируют тягу газотурбинного двигателя и одновременно блокируют выдачу управляющих сигналов на включение реверсивного устройства газотурбинного двигателя при нахождении самолета в воздухе; после касания самолета взлетно-посадочной полосы, которое определяют по наличию первого информационного сигнала обжатия опор шасси типа «Две или три опоры шасси обжаты» или второго информационного сигнала «Шасси обжаты» с использованием датчика частоты вращения колеса передней стойки шасси самолета, переводят рычаг управления двигателем на площадку минимальной обратной тяги, после этого формируют информационный сигнал «Обратная тяга» и открывают механический замок реверсивного устройства, после открытия механического замка формируют информационный сигнал «Замок реверсивного устройства не закрыт»; при этом после перевода рычага управления двигателем на площадку минимальной обратной тяги и одновременном наличии информационных сигналов «Две или три опоры шасси обжаты» или «Шасси обжаты», «Обратная тяга», «Замок реверсивного устройства не закрыт» в автоматическом режиме из электронного регулятора двигателя выдают управляющее воздействие на перевод реверсивного устройства из положения «Прямая тяга» в положение «Обратная тяга», контролируют (диагностируют) положение реверсивного устройства с помощью датчика положения подвижных элементов реверсивного устройства, формируют информационный сигнал в кабину экипажа «Реверсивное устройство включено», после перевода реверсивного устройства в положение «Обратная тяга» переводят рычаг управления двигателем в положение, необходимое для достижения требуемой величины обратной тяги, и автоматически устанавливают режим работы двигателя, соответствующий положению рычага управления двигателем. Осуществляют диагностику отскока самолета от взлетно-посадочной полосы, в случае выявления отскока самолета от взлетно-посадочной полосы в электронном регуляторе двигателя кратковременно снимают блокировку управляющего воздействия на включение реверсивного устройства, при этом включение реверсивного устройства осуществляют после перевода рычага управления двигателем на площадку минимальной обратной тяги независимо от наличия информационных сигналов «Две или три опоры шасси обжаты» или «Шасси обжаты». Предлагаемое изобретение позволяет повысить надежность включения реверсивного устройства авиационного двигателя при посадке самолета с отскоком от взлетно-посадочной полосы и повышение безопасности полета. 4 з.п. ф-лы, 1 ил.

Изобретение относится к области авиационного двигателестроения, в частности к способам автоматического управления газотурбинным двигателем (ГТД). Способ управления газотурбинным двигателем заключается в том, что с помощью электронного регулятора регулируют режимы работы газотурбинного двигателя и одновременно при нахождении самолета в воздухе блокируют выдачу управляющего сигнала на включение реверсивного устройства газотурбинного двигателя; с помощью датчика определяют положение Атек подвижной части реверсивного устройства и также диагностируют (контролируют) отсутствие самопроизвольного перемещения реверсивного устройства, в случае самопроизвольного перемещения реверсивного устройства переводят ГТД на режим малого газа и формируют информационный сигнал в кабину экипажа «Самопроизвольное перемещение реверсивного устройства», после касания самолета взлетно-посадочной полосы переводят рычаг управления двигателем на площадку минимальной обратной тяги и открывают замок реверсивного устройства, формируют информационный сигнал «Замок реверсивного устройства не закрыт», при этом также после перевода рычага управления двигателем на площадку минимальной обратной тяги из электронного регулятора двигателя в автоматическом режиме согласно заданным алгоритмам работы выдают управляющее воздействие на перевод реверсивного устройства из положения «Прямая тяга» в положение «Обратная тяга», после перевода реверсивного устройства в положение «Обратная тяга» на основе данных датчика положения подвижной части реверсивного устройства формируют информационный сигнал «Реверсивное устройство включено», далее переводят рычаг управления двигателем в положение, необходимое для достижения требуемой величины обратной тяги, и автоматически устанавливают режим работы двигателя, соответствующий положению рычага управления двигателем, дополнительно в электронном регуляторе формируют наперед заданный параметр Ауст, характеризующий величину предельно допустимого (уставочного) значения самопроизвольного частичного открытия реверсивного устройства, сравнивают параметр Атек и параметр Ауст, в случае превышения параметра Атек над параметром Ауст в электронном регуляторе при положении рычага управления двигателя в положении выше малого газа прямой тяги формируют управляющее воздействие на снижение режима работы двигателя до малого газа путем уменьшения расхода топлива, подаваемого в камеру сгорания ГТД за минимально возможное время. Предлагаемое изобретение позволяет повысить отказоустойчивость и надежность работы ГТД, повысить безопасность полетов за счет своевременного выявления частичного открытия реверсивного устройства и парирования данного отказа с требуемым высоким быстродействием. 3 з.п. ф-лы, 2 ил.

Изобретение относится к электромеханическим системам управления реверсивным устройством газотурбинного двигателя (ГТД) типа FADEC. Электромеханическая система управления реверсивным устройством газотурбинного двигателя (система) содержит электронный регулятор двигателя (РЭД), электронный блок управления электромеханическими приводными органами, по меньшей мере один блок электромеханических приводных органов для открытия или закрытия реверсивного устройства (РУ), который включает, по меньшей мере, электродвигатель, винтовую передачу и механизм стопорения электродвигателя; датчик положения подвижной части РУ, электромеханический замок РУ, датчик положения электромеханического замка РУ, рычаг управления двигателем с выключателем для коммутации электрической цепи электромеханического замка после перевода рычага управления двигателем на площадку работы РУ, при этом выход РЭД соединен с входом электронного блока управления, первый выход электронного блока управления соединен с блоком электромеханических приводных органов, а второй выход электронного блока управления соединен с входом РЭД; бортовую систему регистрации и индикации параметров полетной информации. Дополнительно введен датчик положения рычага управления двигателем, который соединен с РЭД, выходы датчика положения электромеханического замка РУ соединены с входами РЭД; РЭД содержит по меньшей мере два канала управления, электронный блок управления содержит по меньшей мере два канала управления; при этом РЭД имеет возможность обмена информацией между каналами электронного регулятора и передачи информации в бортовую систему регистрации и индикации параметров полетной информации; электронный блок управления электромеханическим приводом имеет возможность обмена информацией между каналами электронного блока управления, а также возможность выявления отказа блока электромеханических приводных органов и передачи информации об исправном состоянии блока электромеханических приводных органов в каждый канал РЭД. При этом электронный блок управления также имеет возможность передачи информации о работе электромеханического привода РУ в бортовую систему регистрации и индикации параметров полетной информации; а датчик положения подвижной части РУ имеет возможность измерения текущего положения подвижной части РУ. Предлагаемое изобретение позволяет повысить надежность и отказобезопасность электромеханической системы управления реверсивным устройством, повысить безопасность полетов, снизить массу электрических коммуникаций, эксплуатационные затраты и в целом сложность газотурбинного двигателя. 6 з.п. ф-лы, 2 ил.

Изобретение относится к области управления газотурбинного двигателя (ГТД) типа FADEC. Электромеханическая система управления реверсивным устройством (РУ) ГТД с высоконадежным электропитанием, которая содержит электронный регулятор двигателя из состава цифровой системы управления двигателем, имеющий по меньшей мере два электронных канала с возможностью выдачи каждым каналом управляющих команд на открытие или закрытие РУ, электронный блок управления РУ, имеющий по меньшей мере два электронных канала управления с возможностью обмена информацией между этими каналами, три электромеханических привода, каждый из которых включает электродвигатель; два отдельных источника электропитания, при этом каждый отдельный источник электропитания соединен с соответствующим каналом электронного регулятора двигателя и электронного блока управления РУ. Дополнительно содержит блок электропитания агрегатов ГТД с возможностью электропитания каждого канала электронного регулятора и/или каждого канала электронного блока управления РУ, а также с возможностью автоматического контроля электропитания, поступающего на вход блока электропитания агрегатов ГТД; автономный электрический генератор двигателя, включающий два канала генерирования электроэнергии и механически соединенный с ротором ГТД, при этом оба канала генерирования автономного электрического генератора соединены с блоком электропитания агрегатов; каждый отдельный источник электропитания содержит независимый канал электропитания постоянным током номинальным напряжением +28 В, при этом по меньшей мере один отдельный источник электропитания содержит три канала электропитания переменным трехфазным током; выходное напряжение +28 В каждого отдельного источника электропитания соединено с входом блока электропитания агрегатов двигателя и с входом электронного блока управления; выходное напряжение трех каналов переменного трехфазного тока по меньшей мере от одного отдельного источника питания соединено с отдельными входами электронного блока управления РУ; электронный блок управления РУ. Дополнительно содержит модуль контроля электропитания с возможностью автоматического контроля электропитания, поступающего на вход электронного блока управления РУ. Позволяет повысить надежность и отказобезопасность электромеханической системы и двигателя, повысить безопасность полетов в целом. 15 з.п. ф-лы, 1 ил.

Изобретение может быть использовано в газотурбинном двигателестроении, в частности в системах автоматического управления реверсивными устройствами авиационных газотурбинных двигателей. Отказобезопасная электромеханическая система управления реверсивным устройством газотурбинного двигателя содержит электронный регулятор (3) двигателя, электронный блок (4) управления реверсивным устройством по меньшей мере два электромеханических привода (5.1), (5.2), два комплекта датчиков (5.3), (5.4) и дублированные электрические линии связи. Электронный регулятор (3) имеет по меньшей мере два электронных канала (3.1), (3.2) управления с возможностью обмена информацией между этими каналами и выдачи каждым каналом управляющих команд на открытие или закрытие реверсивного устройства. Электронный блок (4) управления реверсивным устройством имеет по меньшей мере два электронных канала (4.1), (4.2) управления с возможностью обмена информации между этими каналами. Электронный блок (4) управления соединен с электромеханическими приводами (5.1), (5.2), комплектами датчиков положения (5.3), (5.4). В случае отказа обоих каналов (3.1), (3.2) электронного регулятора (3) двигателя электронный блок (4) управления реверсивным устройством выдает управляющую команду в электромеханический привод (5.1), (5.2) перемещать подвижные элементы (6.1), (6.2) реверсивного устройства в заранее определенную безопасную позицию. Каждый канал (3.1), (3.2) электронного регулятора (3) двигателя соединен с соответствующим каналом (4.1), (4.2) электронного блока (4) управления. Электронный блок (4) управления дополнительно содержит модуль (4.3) встроенного контроля электронного блока управления с возможностью выдачи выходного сигнала об исправном или неисправном состоянии каждого канала (4.1), (4.2) электронного блока управления, который подается в оба канала (3.1), (3.2) электронного регулятора. Выдача управляющей команды из электронного регулятора (3) в электронный блок (4) управления на перевод реверсивного устройства из закрытого положения в открытое положение выполняется только при исправном состоянии обоих каналов (3.1), (3.2) электронного регулятора и при исправном состоянии хотя бы одного канала (4.1) или (4.2) электронного блока управления. Перевод реверсивного устройства из открытого положения в закрытое положение выполняется при исправном состоянии хотя бы одного канала (3.1) или (3.2) электронного регулятора и исправном состоянии хотя бы одного канала (4.1) или (4.2) электронного блока управления. Технический результат заключается в повышении отказобезопасности электромеханической системы управления реверсивным устройством и двигателя в целом. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области авиационного двигателестроения, в частности к способам управления реверсивным устройством (РУ) газотурбинного двигателя (ГТД) при торможении самолета в условиях посадки и прерванного взлета. Способ заключается в том, что определяют приземление самолета по наличию сигналов обжатия опор шасси, после приземления переводят рычаг управления двигателем (РУД) на площадку «Минимальной обратной тяги», формируют управляющее воздействие на перевод реверсивного устройства в положение «Обратная тяга», диагностируют положение подвижных элементов РУ с помощью по меньшей мере одного датчика положения, формируют информационный сигнал в электронный регулятор и в кабину экипажа «Реверсивное устройство включено» после перевода подвижных элементов РУ в положение «Обратная тяга», переводят РУД в положение «Максимальная обратная тяга» и автоматически устанавливают режим работы двигателя, соответствующий положению РУД; переводят РУД на площадку «Малый газ» после снижения скорости самолета, формируют управляющее воздействие на перевод РУ в положение «Прямая тяга», переводят РУД в положение для выполнения руления самолета. Дополнительно формируют наперед заданное предельное значение τпред времени перемещения РУД из положения «Максимальный режим» в положение включения РУ, в процессе разбега самолета по ВПП на взлетном режиме определяют (измеряют) текущее время τ перемещения РУД из положения «Максимальный режим» в положение включения РУ, сравнивают текущее значение τ перемещения РУД с предельным значением τпред, определяют наличие информационного сигнала «Скорость самолета не превышает скорость принятия решения V1»; в случае если текущее значение τ перемещения РУД меньше предельного значения τпред, информационный сигнал «Скорость самолета не превышает скорость принятия решения V1» присутствует, сигнал обжатия опор шасси самолета присутствует, то осуществляют перевод РУ из положения «Прямая тяга» в положение «Обратная тяга», при этом величину обратной тяги формируют в соответствии с заданным положением РУД независимо от наличия сигнала «РУ включено». Кроме того, формирование предельного значения τпред, определение τ времени перемещения РУД из положения «Максимальный режим» в положение включения РУ, а также сравнение τпред и τ осуществляют в РЭД ГТД, в качестве предельного значения применяют константу τпред, равную 2 с. Формирование и передачу в электронный регулятор сигнала «Скорость самолета не превышает скорость принятия решения V1» и сигнала обжатия опор шасси осуществляют в системе управления самолетным оборудованием. Изобретение позволяет повысить надежность работы ГТД и безопасность полета как при торможении самолета с включением РУ при штатной посадке, так и в условиях прерванного взлета на основе достоверной и автоматической идентификации режима экстренного останова. 7 з.п. ф-лы, 3 ил.

Изобретение относится к управлению газотурбинным двигателем с применением реверса тяги при торможении самолета. Способ управления реверсивным устройством газотурбинного двигателя включает в себя блокировку управляющего сигнала на включение реверсивного устройства при положении рычага управления двигателем вне зоны режима малого газа газотурбинного двигателя или при отсутствии информационного сигнала или сигналов, характеризующих приземление самолета. При возникновении пожара в газотурбинном двигателе дополнительно автоматически формируют информационный сигнал «Пожар в мотогондоле». В случае формирования информационного сигнала «Пожар в мотогондоле» управляющий сигнал на включение реверсивного устройства автоматически блокируется до завершения полета. Достигается повышение безопасности полета при торможении самолета за счет введения автоматической блокировки включения реверсивного устройства до завершения полета в случае возникновения пожара двигателя. 5 з.п. ф-лы, 1 ил.

Изобретение относится к области авиационной техники и предназначено для использования в бортовых системах сбора, регистрации и контроля параметров летательных аппаратов с использованием беспроводной технологии передачи полетной информации, преимущественно для контроля параметров авиационного газотурбинного двигателя (ГТД) и его электронного и электрического оборудования. Устройство содержит блок регистрации параметров ГТД, который соединен с электронными и электрическими устройствами, с наземным пультом контроля двигателя по линиям связи и/или по беспроводной связи, с ПЭВМ лаборатории наземного контроля ГТД по беспроводной связи. Блок регистрации параметров соединен по беспроводной связи с удаленным сервером, который передает полетную информацию разработчику, изготовителю и эксплуатанту авиационного ГТД. Дополнительно в устройстве содержится электрический генератор, механически соединенный с ротором высокого давления ГТД, при этом в блоке питания и коммутации объединено электропитание от бортовой сети и выходное напряжение электрического генератора, а дополнительный выход блока питания и коммутации соединен с блоком регистрации параметров. Дополнительно устройство содержит электронный блок защиты двигателя, выход которого соединен со вторым дополнительным входом блока регистрации параметров. В блок регистрации параметров введен модуль измерения линейных ускорений центра масс двигателя по осям X, Y, Z. В блоке питания и коммутации объединено электропитание от бортовой сети +28 В и выходное напряжение электрического генератора. Электрический генератор представляет собой магнитоэлектрический генератор переменного трехфазного тока переменной частоты, содержит два канала генерирования электроэнергии. В блоке питания и коммутации на основе выходного напряжения электрического генератора формируется частотный сигнал, функционально связанный с частотой вращения ротора высокого давления, которая измеряется в блоке регистрации параметров. Выходной сигнал электронного блока защиты двигателя представляет собой последовательный биполярный код согласно ARINC-429 со скоростью передачи 100 кбит/с, а частота опроса выходного сигнала электронного блока защиты двигателя составляет не менее 50 Гц. Полетная информация регистрируется в течение не менее 150 часов полета в режиме кольцевой записи. Передача параметров осуществляется через беспроводную связь типа Wi-fi сеть, через канал связи типа GSM / GPRS / EDGE. В качестве удаленного сервера используют сервер, работающий по протоколу передачи файлов типа File Transfer Protocol. Изобретение позволяет повысить надежность, эффективность и автономность контроля, снизить время поиска неисправностей, повысить уровень контролепригодности электрического и электронного оборудования и эффективность эксплуатации, сократить эксплуатационные расходы на техническое обслуживание авиационного ГТД. 12 з.п. ф-лы, 1 ил.

Изобретение относится к области авиационного двигателестроения, в частности к способам управления реверсивным устройством газотурбинного двигателя при торможении самолета. Способ включает регулирование тяги электронным регулятором газотурбинного двигателя, автоматическое блокирование выдачи сигналов на управление положением реверсивного устройства (РУ) при нахождении самолета в воздухе до момента касания опор шасси самолета взлетно-посадочной полосы (ВПП); перемещение рычага управления двигателем (РУД) с площадки малого газа на площадку минимальной обратной тяги, открывание механического замка РУ и выдачу информационного сигнала «Замок РУ не закрыт». После его открывания формируют управляющее воздействие из электронного регулятора двигателя на перевод реверсивного устройства из положения «Прямая тяга» в положение «Обратная тяга». Выполняют диагностику положения створок реверсивного устройства и формирование информационного сигнала в кабину экипажа «РУ включено» после перевода створок реверсивного устройства в положение «Обратная тяга», переводят РУД в положение «Максимальная обратная тяга» и автоматическое установление режима работы двигателя, соответствующее положению РУД, далее РУ выключают. Дополнительно формируют первый информационный сигнал «Две или три опоры шасси обжаты», второй информационный сигнал «Шасси обжаты», третий информационный сигнал «Обратная тяга», четвертый информационный сигнал «Блок управления перекладкой реверсивного устройства исправен». Момент касания самолета ВПП определяют при наличии первого информационного сигнала «Две или три опоры шасси обжаты» или второго информационного сигнала «Шасси обжаты», при этом перевод створок РУ из положения «Прямая тяга» в положение «Обратная тяга» осуществляют после установки РУД на площадку «Минимальная обратная тяга» и при одновременном наличии информационных сигналов «Две или три опоры шасси обжаты» или «Шасси обжаты», «Замок реверсивного устройства не закрыт», «Блок управления перекладкой реверсивного устройства исправен». Изобретение позволяет повысить надежность работы двигателя и безопасность полета при торможении самолета с включением реверсивного устройства. 6 з.п. ф-лы, 1 ил.

Изобретение относится к способу создания необходимого давления и расхода топлива в топливной системе авиационного газотурбинного двигателя. Способ создания давления и расхода топлива в топливной системе газотурбинного двигателя, содержащей топливный насос с электрическим приводом, топливный насос с механическим приводом от коробки приводов, дозатор/распределитель топлива, контроллер, датчики, заключающийся в том, что обеспечивают работу топливной системы и газотурбинного двигателя подачей топлива от насоса с электрическим приводом до 40% от максимальной частоты вращения ротора газотурбинного двигателя, постепенно снижают частоту вращения топливного насоса с электрическим приводом, и/или открывают перепуск топлива с выхода насоса с электрическим приводом на вход в топливную систему, при частотах вращения ротора газотурбинного двигателя более 40% обеспечивают необходимый расход топлива подачей от топливного насоса с механическим приводом и от топливного насоса с электрическим приводом, на этапах работы топливного насоса с электрическим приводом в топливной системе, кроме необходимого расхода топлива в камеру сгорания, дополнительно обеспечивают необходимые давление и расход топлива для работы гидроприводных агрегатов и агрегатов распределения топлива, после завершения запуска газотурбинного двигателя и достижения газотурбинным двигателем режима малого газа насос с электрическим приводом переводят в дежурный автономный режим с пониженным напором или выключают, режим земного малого газа и все режимы двигателя с частотами вращения ротора газотурбинного двигателя и приводного вала топливного насоса с механическим приводом более чем на режиме земного малого газа обеспечивают работой топливного насоса с механическим приводом для подачи необходимого расхода топлива в камеру сгорания газотурбинного двигателя и создания необходимого расхода и давления топлива для работы гидроприводных агрегатов, дополнительно, на режимах работы газотурбинного двигателя при частотах вращения ротора газотурбинного двигателя выше 40% и возникновении условий с недостаточным давлением топлива на входе или выходе топливного насоса с механическим приводом, а также при температуре топлива на входе в насос с механическим приводом ниже +10°С включают и/или увеличивают частоту вращения ротора для топливного насоса с электрическим приводом и поддерживают давления или температуру топлива на необходимом уровне. Таким образом, предлагаемое изобретение позволяет исключить ограничения по расходу и давлению топлива при низкой частоте вращения газотурбинного двигателя, снизить величины подогрева топлива от топливного насоса с нерегулируемой производительностью (механический привод) на основных режимах газотурбинного двигателя с низким расходом топлива, повысить отказоустойчивость газотурбинного двигателя по функциональному отказу «самопроизвольное выключение», обеспечить условия для достижения длительных ресурсов топливных насосов, получить оптимальные массогабаритные параметры топливных насосов. 1 ил.

Изобретение относится к области обеспечения безопасности полета самолета с газотурбинным двигателем (ГТД) путем прекращения многократных помпажей компрессора, характеризуемых сильными низкочастотными колебаниями параметров потока в проточной части и вибрациями элементов двигателя. В данном способе дополнительно устанавливают предельно допустимое количество помпажей Nпорог за наперед заданный интервал времени Δτ, определяют количество сформированных сигналов «Помпаж» N за заранее заданный интервал времени Δτ, при этом в случае, если количество сформированных сигналов «Помпаж» N превышает Nпорог, производят автоматическое прекращение подачи топлива в двигатель. Кроме того, дополнительно применяют численное значение параметра Nпорог, равное не менее 3, а продолжительность заранее заданного интервала времени Δτ=5…10. Технический результат изобретения повышение безопасности полета за счет автоматического выключения двигателя при многократных помпажах компрессора за наперед заданный интервал времени Δτ. 1 з.п. ф-лы, 1ил.

Изобретение относится к противообледенительным системам летательных аппаратов. Способ управления противообледенительной системой воздухозаборника газотурбинного двигателя самолета заключается в регистрации обледенения самолета с помощью блока (1), передаче данных об обледенении из системы самолета с помощью блока (2) в электронный регулятор (4) газотурбинного двигателя, формировании отбора обогревающего воздуха из компрессора газотурбинного двигателя, выдаче электронным регулятором управляющего сигнала на открытие заслонки. При этом дополнительно контролируют исправность передачи данных из системы самолета в электронный регулятор двигателя, измеряют температуру воздуха на входе в двигатель с помощью датчика (5), расположенного на воздухозаборнике газотурбинного двигателя. Далее, сравнивают измеренную температуру воздуха на входе в двигатель с заранее установленным предельным значением. В случае одновременного выявления отказа передачи данных и при текущем значении температуры меньше заданного, обеспечивают подвод обогревающего воздуха к воздухозаборнику. Изобретение повышает надежность работы газотурбинного двигателя в условиях обледенения. 3 з.п. ф-лы, 1 ил.

Изобретение относится к газотурбинному двигателестроению и может быть использовано в бортовых системах регистрации параметров авиационного газотурбинного двигателя. Автономное интегрированное устройство регистрации параметров авиационного газотурбинного двигателя включает связанные друг с другом датчики и сигнализаторы двигательных параметров, блок мониторинга параметров двигателя и электронный регулятор двигателя. Блок мониторинга параметров двигателя соединен с бортовыми системами индикации и регистрации. Устройство дополнительно содержит блок регистрации параметров, включающий связанные друг с другом энергонезависимый накопитель полетной информации, устройство ввода-вывода, вычислитель и модуль беспроводной связи. Блок регистрации параметров соединен с электронными и электрическим устройствами, обеспечивающими работу двигателя, с наземным пультом контроля двигателя и с ПЭВМ лаборатории наземного контроля двигателя. Блок регистрации параметров и функциональные устройства размещены на корпусе двигателя. При этом выход блока регистрации параметров содержит выходные сигналы в виде последовательных биполярных кодов. Предлагаемое изобретение позволяет повысить надежность и эффективность контроля работы газотурбинного двигателя, сократить временя поиска неисправностей, повысить эффективность технического обслуживания газотурбинного двигателя. 7 з.п. ф-лы, 1 ил.

Изобретение относится к авиационным газотурбинным двигателям, а именно к способам управления тягой газотурбинного двигателя при пожаре в мотогондоле двигателя на взлете самолета. Контролируют поступление сигнала «V1. Скорость принятия решения», измеряют параметр Тм/г, характеризующий температурное состояние в мотогондоле двигателя, и сравнивают его с заданным значением ..В случае наличия на взлете самолета одновременно сигналов «Пожар в мотогондоле» и «V1. Скорость принятия решения» фиксируют текущее значение nв, используя его в качестве заданного значения для стабильного поддержания расхода топлива в камеру сгорания. При наличии сигнала «Пожар в мотогондоле» с одновременным выполнением условия осуществляют снижение расхода топлива до соответствующего режиму полетного малого газа двигателя. Причем при сохранении данных условий в течение 1-3 секунд подачу топлива в камеру сгорания прекращают полностью. В случае снятия сигнала «Пожар в мотогондоле» фиксацию режима работы двигателя прекращают. Изобретение позволяет повысить безопасность полета на взлете самолета. 3 з.п. ф-лы, 1 ил.

Изобретение относится к области газотурбинного двигателестроения, а именно к системам автоматической защиты газотурбинного двигателя от раскрутки турбины при ее отсоединении от вала компрессора. Для определения технического состояния двигателя дополнительно определяют начальную Sнач и текущую Sтек величины скольжения роторов по формулам: и . При этом nвд нач - частота вращения турбокомпрессора перед изменением скольжения, об/мин; nв нач - частота вращения турбины низкого давления перед изменением скольжения, об/мин; nвд тек - частота вращения турбокомпрессора через интервал времени Δt, об/мин; nв тек - частота турбины низкого давления через интервал времени Δt, об/мин. Вычисляют величину ΔS=Sтек-Sнач и сравнивают ее с изначально заданной величиной A1. Вычисляют величину Δnв=nв нач - nв тек и сравнивают ее с изначально заданной величиной А2. В случае если одновременно выполняется условие, при котором ΔS>А1 и Δnв>А2, то осуществляют уменьшение или полное прекращение подачи топлива в двигатель и подачу сигнала на открытие клапанов перепуска воздуха в компрессоре. Заявленное изобретение позволит повысить достоверность определения неисправностей и надежность системы защиты двухконтурного турбореактивного двигателя от раскрутки турбины низкого давления. 1 ил.

(57) Изобретение относится к газотурбинным двигателям, а именно к способам определения погасания камеры сгорания газотурбинного двигателя, преимущественно авиационного назначения. Способ заключается в том, что измеряют давление P в х ∗ и температуру T в х ∗ воздуха на входе в газотурбинный двигатель, формируют заданное значение , характеризующее погасание камеры, определяют текущее значение , сравнивают с заданным , также дополнительно измеряют расход топлива Gт в камеру сгорания, формируют минимальное значение расхода топлива Gт мин в камеру сгорания, формируют функциональную зависимость (Gт/Pк)пр=f(nвд пр), где , и если одновременно текущее значение расхода топлива Gт больше расчетного значения расхода топлива, определенного по функциональной зависимости (Gт/Pк)пр=f(nвдпр), Gт больше Gт мин, и , то при отсутствии сигнала останова двигателя формируют информационный сигнал «погасание камеры сгорания» и выдают управляющую команду на включение агрегата зажигания камеры сгорания. Изобретение повышает достоверность определения факта погасания камеры сгорания и повышает надежность работы газотурбинного двигателя. 1 ил.

Изобретение относится к способам управления силовыми установками летательных аппаратов, а более конкретно - к способам автоматического управления тягой газотурбинных двигателей для поддержания заданной скорости полета самолета

Изобретение относится к области обеспечения надежности защиты компрессора газотурбинного двигателя при неустойчивой работе на режиме запуска

Изобретение относится к системам управления силовыми газотурбинными установками

Изобретение относится к автоматическому управлению газотурбинными двигателями (ГТД), в частности к автоматическому управлению двухвальными двухконтурными турбореактивными двигателями на динамических режимах

Изобретение относится к области раннего обнаружения неустойчивой работы компрессора газотурбинного двигателя на запуске и позволяет повысить быстродействие диагностики неустойчивой работы компрессора на основе информации о динамике изменения отношения первых производных контролируемых параметров Ттнд и n вд

Изобретение относится к газотурбинным двигателям, в том числе авиационного применения

Изобретение относится к области управления газотурбинными двигателями, в частности к способам защиты турбин авиационных газотурбинных двигателей (ГТД) от перегрева

Изобретение относится к системам автоматического регулирования газотурбинных двигателей и позволяет повысить надежность работы двухканальной системы автоматического управления за счет функционального контроля селектора переключения каналов в процессе выключения двигателя по окончании полета

Изобретение относится к области обеспечения безопасности полета самолета с газотурбинным двигателем

Изобретение относится к способам управления силовой установкой самолета, состоящей из двух газотурбинных двигателей (ГТД), при отказе или частичной потере тяги одного из двигателей

Изобретение относится к области обеспечения безопасности полета самолета с газотурбинным двигателем

Изобретение относится к области газотурбинного двигателестроения и позволяет повысить надежность двигателя путем поддержания заданного теплового состояния маслосистемы в более широком диапазоне эксплуатационных режимов двигателя

 


Наверх