Патенты автора Серебряков Дамир Ильдарович (RU)

Изобретение относится к области промышленной аэродинамики и может быть использовано для проведения аэродинамических испытаний авиационной и ракетной техники. Установка содержит испытательную камеру с высокоскоростным аэродинамическим соплом, источник сжатого воздуха с магистралью высокого давления, рекуперативный теплообменник для нагрева сжатого воздуха, имеющий полый корпус с входным и выходным каналами полости корпуса, входным воздушным коллектором, подключенным к магистрали высокого давления, и выходным воздушным коллектором, сообщенным со входом аэродинамического сопла, регулятор расхода воздуха, установленный в магистрали высокого давления и подключенный к системе автоматического управления, огневую камеру с топливными форсунками, каналом подвода сжатого воздуха и системой зажигания, подключенную каналом подвода сжатого воздуха через дополнительный регулятор расхода воздуха к источнику давления воздуха, а выходом сообщенную с входным каналом полости корпуса рекуперативного теплообменника, систему подачи топлива с регулятором расхода топлива, подключенную к топливным форсункам, и утилизатор тепла, связанный с выходным каналом полого корпуса рекуперативного теплообменника. Также она снабжена источником высокого давления нейтрального газа, подогревателем топлива, установленным в системе подачи топлива, акустическим генератором, установленным в полости корпуса рекуперативного теплообменника, и прямоточным реометром, выполненным в виде герметичной измерительной емкости с датчиком уровня, имеющей калиброванное отверстие с запорным элементом, расположенное в днище измерительной емкости. Причем сверхзвуковое аэродинамическое сопло выполнено с регулируемой площадью критического сечения. Технический результат заключается в расширении функциональных возможностей установки. 3 з.п. ф-лы, 3 ил.

Изобретение относится к испытаниям авиационной и ракетной техники. Установка для газодинамических испытаний содержит испытательную камеру (1) и генератор (7) газового потока. В генераторе (7) газового потока установлен эжектор (25), имеющий канал (26) активной среды первой ступени со сверхзвуковым соплом (27) и камерой (28) смешения первой ступени, подключенный входом (8) к магистрали (4) высокого давления. Концентрично каналу (26) расположен кольцевой коллектор (29) пассивной среды, подключенный входом к системе (14) подачи кислорода, а кольцевым каналом (30) пассивной среды к камере (28) смешения первой ступени. Кольцевой коллектор (31) и кольцевой канал (32) активной среды второй ступени расположены концентрично кольцевому каналу (30) пассивной среды. Кольцевой канал (32) сообщен с камерой (33) смешения второй ступени, кольцевой коллектор (31) второй ступени подключен входом к системе (16) подачи топлива. В кольцевом канале (32) активной среды второй ступени установлено сверхзвуковое сопло (34), камера (33) смешения второй ступени сообщена с камерой сгорания (11). Достигается обеспечение равномерного распределения частиц кислорода и топлива в потоке сжатого воздуха, подаваемого в камеру сгорания. 1 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам, предназначенным для аэродинамических испытаний, и может быть использовано в авиастроении. Стенд включает динамометрическую платформу, предназначенную для закрепления объекта, установленную посредством по меньшей мере четырех пластин переменной жесткости на неподвижную опорную платформу с возможностью перемещения динамометрической платформы по трем ортогональным осям, причем каждая пластина выполнена с гибким участком, сопряженным с жесткими участками, и снабжена элементом измерения нагрузки, и отличается тем, что содержит датчик, регистрирующий продольные перемещения динамометрической платформы и предназначенный для измерения продольной нагрузки, а элемент измерения нагрузки выполнен в виде двух пар одинаковых тензорезисторных датчиков, предназначенных для измерения вертикальных и поперечных нагрузок, установленных на хотя бы одном гибком участке каждой пластины на одном уровне относительно неподвижной опорной платформы, датчики каждой пары установлены на противоположных широких сторонах пластины, причем вертикальные оси симметрии чувствительных элементов датчиков одной пары ориентированы вдоль вертикальной оси симметрии широкой стороны пластины, а вертикальные оси симметрии чувствительных элементов датчиков другой пары параллельны ей, датчики подключены в одно плечо отдельных измерительных мостов, причем датчики каждой пары подключены последовательно. Технический результат заключается в возможности повышения точности имитации условий сверхзвукового полета ЛА. 12 ил.

Изобретение относится к прямоточным воздушно-реактивным двигателям

Изобретение относится к области космической и специальной техники, а точнее к силовым установкам для гиперзвуковых летательных аппаратов (ГЛА) и многоразовых космических транспортных систем (МКТС) с комбинированными и силовыми установками

 


Наверх