Патенты автора Алабин Александр Николаевич (RU)

Изобретение относится к области металлургии, в частности к сплавам на основе алюминия, и может быть использовано для получения тонкостенных отливок сложной формы литьем в металлическую форму, в частности для литья автокомпонентов, деталей электронных устройств и др. Литейный сплав на основе алюминия содержит, мас.%: кальций 1,5-5,1; железо до 0,7; кремний до 1,0; цинк 0,1-1,8 и, необязательно, один или более марганец 0,2-2,5, титан 0,005-0,1; цирконий 0,05-0,14; хром 0,05-0,15, при этом кальций и цинк присутствуют в структуре слава преимущественно в виде эвтектических частиц. Техническим результатом является обеспечение требуемого сочетания технологических свойств при литье и коррозионной стойкости. 3 з.п. ф-лы, 3 табл., 4 пр., 2 ил.
Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих в коррозионных средах под действием высоких нагрузок, в том числе при повышенных и криогенных температурах. Алюминиевый сплав со структурой, состоящей из алюминиевого раствора и вторичных выделений, содержит, мас.%: магний 4,0-5,5, марганец 0,3-1,0, железо 0,08-0,25, хром 0,08-0,18, цирконий 0,06-0,16, титан 0,02-0,15, ванадий 0,01-0,06, скандий 0,01-0,28, кремний 0,08-0,18, алюминий и неизбежные примеси - остальное, при этом не менее 75% доли каждого элемента из группы цирконий и скандий образуют вторичные выделения с решеткой типа L12 в количестве не менее 0,18 об.% и с размером частиц не более 20 нм. Изобретение направлено на получение алюминиевого сплава с высокой технологичностью при деформационной обработке при одновременном повышении механических свойств. 2 н. и 2 з.п. ф-лы, 3 табл., 1 пр.

Изобретение относится к области металлургии проводниковых алюминиевых сплавов и может быть использовано для изготовления изделий электротехнического назначения, в частности гибких кабелей или экранов силовых кабелей. Проводниковый алюминиевый сплав содержит, масс. %: железо 0,40-0,60, цирконий 0,05-0,10, кремний до 0,07, по меньшей мере один примесный элемент, выбранный из группы титан, хром, ванадий, марганец, до 0,015, алюминий и неизбежные примеси остальное, при этом сплав имеет структуру, состоящую из алюминиевой матрицы и вторичных выделений и эвтектической фазы, причем алюминиевая матрица содержит кремний и цирконий, а эвтектическая фаза – по меньшей мере один элемент из группы, содержащей кремний и железо, со средним поперечным размером не более 3 мкм. Техническим результатом изобретения является повышение технологичности катанки из сплава при волочении в проволоку малых диаметров, а также расширение арсенала проводниковых алюминиевых сплавов системы Al-Fe с добавкой циркония и кремния, обладающих высокой электропроводностью, коррозионной стойкостью и прочностью, в том числе после высокотемпературных нагревов. 2 н. и 5 з.п. ф-лы, 2 ил., 4 табл., 1 пр.

Изобретение относится к области металлургии, а именно к сплавам на основе алюминия, и может быть использовано при получении тонкостенных отливок сложной формы, преимущественно литьем под давлением, и может быть использовано для литья деталей для автомобилестроения, корпусов электронных устройств и др. Из материала могут быть получены детали ответственного назначения, способные работать, в том числе, и при повышенных температурах вплоть до 300°С. Литейный сплав на основе алюминия содержит, мас.%: кальций 1,1-2,7, железо 0,05-0,25, марганец 1,2-2,4, кремний 0,06-0,22, по меньшей мере один элемент, выбранный из группы, содержащей цинк до 1,0, хром 0,05-0,2, титан 0,05-0,2, цирконий 0,05-0,18, ванадий до 0,15, скандий до 0,14, алюминий и неизбежные примеси - остальное. Изобретение направлено на получение литых алюминиевых сплавов, обладающих требуемым сочетанием технологических и механических свойств. 2 н. и 4 з.п. ф-лы, 5 пр., 8 табл., 1 ил.

Изобретение относится к непрерывному литью металла. Кристаллизатор содержит литейное колесо (6) с открытым каналом на наружной поверхности, прилегающую к нему непрерывную ленту (4), закрывающую открытый канал, и систему охлаждения. Поперечное сечение открытого канала – равнобедренная трапеция с отношением длины большего основания (19) к длине меньшего основания (20) 1,3-1,6. Система охлаждения включает по меньшей мере четыре дуговых трубчатых оросителя: наружный (11), расположенный со стороны наружной поверхности (15) и непрерывной ленты (4), внутренний (12), расположенный со стороны внутренней поверхности (17), правый (10) и левый (13) боковые оросители, расположенные со стороны правой и левой боковых поверхностей (16) литейного колеса. Отношение расхода охлаждающей жидкости со стороны внутренней поверхности (17) к расходу охлаждающей жидкости со стороны наружной поверхности (15) колеса (6) составляет 1,9-3,0. Отношение суммарного расхода охлаждающей жидкости боковых поверхностей (16) к расходу охлаждающей жидкости внутренней поверхности (17) составляет 1,3-1,7. Обеспечивается повышение технологичности непрерывнолитой заготовки, увеличение скорости ее производства и повышение ее качества за счет исключения формирования дефектов кристаллизационного происхождения. 2 н. и 13 з.п. ф-лы, 3 ил., 4 табл., 2 пр.

Изобретение относится к области металлургии и может быть использовано для получения фасонных отливок гравитационным литьем в кокиль, литьем под давлением, кристаллизацией под давлением, используемых в автомобилестроении, для корпусов электронных устройств, а также в качестве деталей ответственного назначения, способных работать при повышенных температурах. Литейный сплав на основе алюминия содержит, мас. %: железо 0,1-1,1, марганец 0,5-2,5, никель 1,2-2,2, хром 0,02-0,20, титан 0,02-0,15, цирконий 0,02-0,35, алюминий – остальное, при этом железо, никель представлены преимущественно в виде алюминидов эвтектического происхождения в количестве не менее 4 мас. %. Изобретение направлено на создание нового высокотехнологичного алюминиевого сплава, способного к упрочнению без использования операции закалки в воду. 3 з.п. ф-лы, 3 пр., 5 табл., 1 ил.

Изобретение относится к области металлургии литейных сплавов на основе алюминия и может быть использовано для производства алюминиевых сплавов на основе системы Al-Si, дополнительно легированных магнием, медью, марганцем, стронцием и другими элементами. Способ плавки и литья литейного алюминиевого сплава, содержащего от 5 до 22 мас. % кремния и, по меньшей мере, один металл, выбранный из группы, содержащей железо, магний, марганец, стронций и медь, включает получение жидкой лигатуры, содержащей кремний в количестве 20-75 мас. %, получение расплава алюминиевого сплава путем смешивания расплава алюминия, расплава лигатуры, содержащей кремний, и твердые компоненты, содержащие кремний и по меньшей мере один элемент из группы, включающей железо, магний, марганец, стронций и медь, и кристаллизацию расплава алюминиевого сплава, при этом приготовление жидкой лигатуры выполняют путем смешивания расплава алюминия с температурой не выше 860°С, содержащего бор от 0,0001 до 0,03 мас. %, и расплава кремния с температурой не ниже 1440°С, при этом смешивание осуществляют по меньшей мере в 3 приема с последовательным увеличением концентрации кремния в расплаве лигатуры, после чего осуществляют выдержку расплава лигатуры в течение не менее 30 минут, причем количество первичных кристаллов кремния не должно превышать более 5 мас. %, получение расплава алюминиевого сплава заданного химического состава осуществляют путем смешивания расплава алюминия с температурой, равной 700-860°С, и жидкой лигатуры с кремнием и бором, обеспечивая количество кремния в расплаве не менее 80 мас. % от количества кремния в получаемом сплаве, а кристаллизацию расплава осуществляют при температуре, превышающей температуру ликвидуса алюминиевого сплава не менее чем на 30°С, с получением литых брусков или чушек. Изобретение направлено на повышение производительности приготовления расплава и получение структуры литейного алюминиевого сплава с благоприятной морфологией. 2 з.п. ф-лы, 4 табл., 3 пр.

Изобретение относится к области металлургии, в частности к сплавам на основе алюминия, и может быть использовано для получения изделий, в том числе сварных конструкций, работающих в коррозионных средах под действием высоких нагрузок, в том числе при повышенных и криогенных температурах. Алюминиевый сплав содержит, мас. %: цирконий от 0,10 до 0,50, железо от 0,10 до 0,30, марганец от 0,40 до 1,5, хром от 0,15 до 0,6, скандий от 0,09 до 0,25, титан от 0,02 до 0,10, по меньшей мере один элемент, выбранный из группы: кремний от 0,10 до 0,50, церий от 0,10 до 5,0, кальций от 0,10 до 2,0, необязательно магний от 2,0 до 5,2, алюминий и неизбежные примеси остальное, при этом структура сплава представляет собой алюминиевую матрицу, содержащую кремний и необязательно магний, вторичные выделения фаз Al3(Zr,X) с решеткой типа L12 и с размером не более 20 нм, где X-Ti и/или Sc, вторичные выделения Al6Mn и Al7Cr, и эвтектические фазы, содержащие железо и по меньшей мере один элемент из группы, содержащей кальций и церий, со средним размером частиц не более 1 мкм, при следующем соотношении фаз, мас. %: вторичные выделения Al3(Zr,Sc) 0,5-1,0, вторичные выделения Al6Mn и Al7Cr 2,0-3,0, эвтектические фазы, содержащие железо и по меньшей мере один элемент из группы, содержащей кальций и кремний 0,5-6,0, алюминиевая матрица - остальное. Изобретение направлено на получение сплава с высоким уровнем физико-механических характеристик, технологичности и коррозионной стойкости. 2 з.п. ф-лы, 3 пр., 5 табл., 2 ил.

Изобретение относится к области металлургии, в частности производству литейных материалов на основе алюминия, и может быть использовано для получения ответственных изделий, работающих под действием высоких нагрузок, используемых для автомобилестроения, спортивного инвентаря и других. Высокопрочный сплав на основе алюминия содержит, мас.%: цинк 5-8, магний 1,5-2,1, кальций 0,10-1,9, железо 0,08-0,5, титан 0,01-0,15, кремний 0,08-0,9, никель 0,2-0,4, церий 0,2-0,4, цирконий 0,08-0,15, скандий 0,08-0,15, алюминий – остальное, при этом содержание цинка в алюминиевом растворе и вторичных выделениях составляет не менее 4 мас.%. Техническим результатом является увеличение прочностных свойств сплава и изделий из него за счет образования вторичных выделений упрочняющей фазы путем дисперсионного твердения. 15 з.п. ф-лы, 7 пр., 9 табл., 5 ил.

Изобретение относится к области металлургии и может быть использовано для получения деформированных полуфабрикатов в виде профилей различного сечения. Способ получения деформированного полуфабриката из сплава на основе алюминия включает приготовление расплава на основе алюминия, содержащего железо и по меньшей мере один легирующий элемент, выбранный из группы, содержащей цирконий, кремний, магний, медь, скандий, стронций, марганец и никель, получение литой заготовки непрерывной длины путем кристаллизации расплава со скоростью охлаждения, обеспечивающей формирование литой структуры с размером дендритной ячейки не более 60 мкм, горячую прокатку литой заготовки до получения деформированного полуфабриката конечного или промежуточного сечения при начальной температуре заготовки не выше 520°C со степенью деформации до 60%, при этом получают деформированный полуфабрикат со структурой, представляющей собой алюминиевую матрицу с распределенными в ней по меньшей мере одним выбранным легирующим элементом и эвтектическими частицами с поперечным размером не более 3 мкм. Способ обеспечивает совокупный высокий уровень физико-механических характеристик, в частности высокий уровень относительного удлинения не ниже 10%, временного сопротивления разрыву и высокого уровня проводимости, за один технологический этап производства. 8 з.п. ф-лы, 7 табл., 6 пр.

Изобретение относится к технологии алюминиевых сплавов и может быть использовано при получении изделий, работающих при повышенных температурах. Алюминиевый сплав, содержащий цирконий и по меньшей мере один элемент, выбранный из группы, содержащей железо и никель, имеет структуру, представляющую собой алюминиевую матрицу с распределенными в ней частицами вторично выделенной фазы Al3Zr с кристаллической решеткой L12 и с размером не более 20 нм и частицами фаз эвтектического происхождения в количестве от 0,5 до 3,0 мас.%, содержащих железо и/или никель, при этом алюминиевая матрица содержит по массе не более 1/3 циркония от общего содержания циркония в сплаве. При этом сплав содержит элементы в следующем соотношении, мас.%: цирконий 0,22-0,70, железо 0,20-0,80, никель 0,005-0,4, алюминий и неизбежные примеси - остальное. Сплав обладает повышенной термостойкостью и характеризуется совокупностью высокого уровня физико-механических характеристик и технологичности. 12 з.п. ф-лы, 5 пр., 7 табл.

Изобретение относится к области металлургии, конкретно к сплавам на основе алюминия, и может быть использовано при получении фасонных отливок различными методами литья, в частности дисков автомобильных колес методом литья под низким давлением. Литейный алюминиево-кремниевый сплав содержит, мас. %: кремний 10,5-11,5, стронций 0,02-0,08, магний 0,05-0,15, марганец 0,3-0,5, железо 0,3-0,5, алюминий и примеси – остальное, и имеет структуру, состоящую из первичных кристаллов алюминиевого твердого раствора и модифицированной алюминиево-кремниевой эвтектики, в состав которой входит стронцийсодержащая фаза, при этом не менее 90% всего количества железа входит в состав алюминиево-кремниевой эвтектики в виде фазы Al15(Fe,Mn)3Si2. Изобретение направлено на создание нового экономнолегированного силумина, предназначенного для получения фасонных отливок сложной формы и обладающего высокими и стабильными механическими свойствами. 2 з.п. ф-лы, 2 пр., 2 табл., 1 ил.

Изобретение относится к области металлургии, в частности к технологии получения алюминиевых сплавов, и может быть использовано для получения изделий электротехнического назначения, способных работать при повышенных температурах. Способ получения катанки из термостойкого сплава на основе алюминия, содержащего в качестве основного легирующего элемента цирконий в количестве 0,20-0,52 масс. %, включает приготовление расплава, получение литой заготовки бесконечной длины путем кристаллизации расплава, получение катанки бесконечной длины путем горячей деформации литой заготовки, намотку катанки в бухты мерной длины, термическую обработку бухт катанки путем нагрева и выдержки при заданной температуре, при этом кристаллизацию расплава проводят при температуре на 5°С выше температуры ликвидуса сплава, максимальную температуру катанки после горячей деформации поддерживают на уровне не более 300°С, термическую обработку бухт катанки осуществляют при температуре нагрева не выше 415°С в течение не более 144 часов, при этом нагрев бухт в интервале температур 300-400°С осуществляют со скоростью не выше 15°С/час. Техническим результатом изобретения является повышение термостойкости сплава на основе алюминия при обеспечении требуемой электропроводности, достигаемые без использования длительных временных выдержек при термической обработке. 3 з.п. ф-лы, 2 ил., 4 пр., 4 табл.

Изобретение относится к области металлургии, в частности к сплаву на основе алюминия, а также изделию из указанного сплава, и может быть использовано при получении изделий электротехнического назначения при производстве кабельно-проводниковой продукции для электропроводки зданий и сооружений. Проводниковый сплав на основе алюминия содержит, в мас.%: железо 0,3-1,0, кремний 0,04-0,15, никель 0,005-0,2, медь 0,1-0,3, алюминий - остальное, и характеризуется структурой, представляющей собой матрицу, образованную алюминиевым твердым раствором, в котором равномерно распределены железосодержащие частицы в количестве не менее 1 об.%, имеющие средний размер не более 3 мкм, при этом суммарное количество кремния и меди в сплаве не превышает 0,35 мас.%. Сплав может быть получен в виде катанки или проволоки. Техническим результатом является увеличение технологической пластичности катанки или проволоки, полученной из предложенного сплава за счет образования компактных частиц железосодержащих фаз эвтектического происхождения. 4 н. и 6 з.п. ф-лы, 3 пр., 4 табл., 1 ил.

Изобретение относится к области металлургии, в частности к алюминиевым сплавам, и может быть использовано для изготовления высоконагруженных паяных конструкций. Алюминиевый сплав содержит, мас. %: кремний 0,5-0,8, магний 0,5-0,9, медь 0,05-0,3, хром 0,05-0,2, железо 0,15-0,25, титан 0,005-0,02, цирконий 0,1-0,2, молибден 0,05-0,35, алюминий - остальное, при этом медь полностью связана во вторичные выделения фазы Al5Cu2Mg8Si6, температура солидуса материала составляет не менее 600°C. Изобретение направлено на повышение прочности паяных конструкций и заготовок, что приводит к увеличению срока службы изделий. 3 з.п. ф-лы, 4 пр., 3 табл.

Изобретение относится к области металлургии высокопрочных материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок, таких как детали летательных аппаратов, автомобилей и других транспортных средств, детали спортинвентаря и др. Способ получения прутков из алюминиевых сплавов системы алюминий-цинк-магний-никель-железо-цирконий включает приготовление расплава на основе алюминия, полученного по технологии электролиза с инертным анодом и содержащего железо, введение в него цинка, магния, никеля, меди и циркония, получение цилиндрического слитка, его термическую и деформационную обработку методом радиально-сдвиговой прокатки при температуре от 270 до 300°C с суммарным обжатием от 65 до 85% и частоте вращения валков от 40 до 60 об/мин и упрочняющую термообработку полученного прутка, включающую закалку и искусственное старение. Изобретение направлено на получение высокопрочных калиброванных прутков со следующим уровнем механических свойств: временное сопротивление (σв) - не менее 600 МПа, предел текучести (σ0,2) - не менее 550 МПа, относительное удлинение (δ) - не менее 5%. 1 з.п. ф-лы, 1 пр., 2 табл., 3 ил.

Изобретение относится к области металлургии высокопрочных материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150°С, таких как детали летательных аппаратов (самолетов, вертолетов, ракет), автомобилей и других транспортных средств (велосипедов, самокатов, тележек), детали спортинвентаря и др. Способ получения отливок из высокопрочного сплава на основе алюминия включает приготовление расплава алюминия, содержащего цинк, магний, медь, никель и железо, получение отливки методом литья приготовленного расплава и термообработку отливки для формирования структуры, состоящей из дисперсионно упрочненной алюминиевой матрицы и частиц фазы Al9FeNi, при этом приготовление расплава алюминия осуществляют с использованием алюминия, получаемого по технологии электролиза с инертным анодом, при этом расплав готовят при следующей концентрации легирующих элементов, мас.%: цинк 6,3-7,5, магний 2,1-2,8, медь 0,2-0,35, никель 0,6-0,8, железо 0,50-0,70, алюминий - остальное, а после термообработки получают структуру с размером дендритной ячейки алюминиевой матрицы не более 30 мкм и микротвердостью не менее 170 HV. Техническим результатом изобретения является получение отливок с временным сопротивлением (σв) - не менее 500 МПа, пределом текучести (σ0,2) - не менее 450 МПа, относительным удлинением (δ) - не менее 5%. 2 з.п. ф-лы, 3 пр., 4 табл., 3 ил.

Изобретение относится к области металлургии, в частности к борсодержащим материалам на основе алюминия, получаемым в виде слитков и предназначено для получения листового проката, в том числе толщиной менее 0,3 мм, к которому предъявляются требования низкого удельного веса и повышенной прочности в сочетании с радиационнозащитными свойствами. Способ получения слита из сплава на основе алюминия, содержащего бор для изготовления листового проката, включает приготовление расплава алюминия, формирование в нем борсодержащих частиц, получение слитка путем кристаллизации расплава и его гомогенизацию, причем готовят алюминиевый расплав, содержащий от 3 до 4,6 мас.% меди, от 2,3 до 2,7 мас.% магния и от 0,3 до 0,7 мас.% марганца, бор вводят в расплав в виде лигатуры в количестве, обеспечивающем в структуре слитка образование не мене 5 об.% борсодержащих частиц, формирование которых осуществляют при температуре расплава в пределах от 940 до 1000°С в течение 30-5 мин с получением в структуре слитка равномернораспределенных борсодержащих частиц со средним размером не более 25 мкм. Высокая технологичность слитков позволяет получать из них деформированные полуфабрикаты, в том числе тонколистовой прокат, имеющие после операций дисперсионного упрочнения высокие эксплуатационные свойства. 2 пр., 3 табл., 4 ил.

Изобретение относится к области металлургии, в частности к производству высокопрочных материалов на основе алюминия, и может быть использовано для получения ответственных изделий, работающих под действием высоких нагрузок, в частности для изготовления деталей, используемых для автомобилестроения, летательных аппаратов, спортивного инвентаря, корпусов электронных устройств и др. Высокопрочный сплав на основе алюминия содержит, мас. %: цинк 5,2-6,0, магний 1,5-2,0, никель 0,5-2,0, железо 0,4-1,0, медь 0,01-0,25, цирконий 0,05-0,20, по меньшей мере, один элемент из группы, включающей скандий 0,05-0,10 и титан 0,02-0,05, алюминий – остальное, при выполнении соотношения 1≤Ni/Fe≤2 и суммарном содержании циркония и, по меньшей мере, одного элемента из группы, включающей титан и скандий, составляющем не более 0,25 мас. %. Техническим результатом изобретения является увеличение прочностных свойств сплава и изделий, выполненных из него, за счет образования вторичных выделений упрочняющей фазы путем дисперсионного твердения. 7 з.п. ф-лы, 3 пр., 4 табл., 2 ил.
Изобретение относится к области металлургии, в частности к деформированным борсодержащим алюмоматричным композиционным материалам в виде листов, к которым предъявляются специальные требования по поглощению нейтронного излучения в сочетании с низким удельным весом. Способ включает приготовление алюминиевого расплава, содержащего, мас.%: марганец от 0,5 до 2, магний от 0,5 до 4, кремний от 0,1 до 0,3, скандий от 0,15 до 0,3, формирование борсодержащих частиц в алюминиевом расплаве путем введения в расплав лигатуры, содержащей смесь порошка TiB2 и солей NaCl2, MgCl2 и KCl, причем температуру расплава в процессе замешивания лигатуры поддерживают в пределах от 720 до 800°С в течение 30-45 минут, получение слитка путем кристаллизации расплава, получение листа путем деформирования слитка и отжиг деформированного полуфабриката при температуре 250-350°С, при этом получают листы со структурой композиционного материала, содержащего частицы TiB2 в количестве от 4 до 8%. Техническим результатом изобретения является достижение высокого уровня прочностных характеристик (временное сопротивление при растяжении (σв) - не менее 280 МПа) без использования операции гомогенизации для слитков и закалки для листов. 1 з.п. ф-лы, 2 пр., 2 табл.

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, и может быть использовано при получении деформированных полуфабрикатов в виде прессованных профилей, прутков, труб, катаных плит и листов, предназначенных для использования в строительстве, судостроении, авиационной, автомобильной и других отраслях промышленности. Сплав на основе алюминия содержит, мас.%: марганец 0,5-2,0, железо 0,2-0,6, магний 0,5-1,5, цирконий 0,2-0,6, кремний 0,15-0,6, медь 0,1-0,3, цинк 0,05-0,5, алюминий остальное, при соотношении Zr/Si=1-2, при этом цирконий в структуре сплава присутствует в виде вторичных выделений кубической фазы Al3Zr с решеткой L12 и со средним размером не более 20 нм. Способ получения деформированного полуфабриката из сплава на основе алюминия включает получение расплава, получение слитка путем кристаллизации расплава, получение деформированного полуфабриката путем деформирования литого слитка и термической обработки деформированного полуфабриката, при этом кристаллизацию расплава проводят при температуре, превышающей температуру ликвидуса сплава не менее чем на 50°C, а скорость охлаждения в интервале кристаллизации составляет не менее 20 K/с, деформирование литой заготовки проводят при температуре, не превышающей 450°C, а термическую обработку готового деформированного полуфабриката проводят при температуре 300-400°C. Техническим результатом изобретения является повышение уровня механических свойств, в том числе после нагревов при температурах до 300°C включительно, достигаемых без использования гомогенизации слитков и закалки деформированных полуфабрикатов. В частности, временное сопротивление превышает 250 МПа, относительное удлинение превышает 8%, а предел текучести выше 200 МПа. 2 н. и 2 з.п. ф-лы, 1 пр., 3 табл., 5 ил.

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для использования в качестве упаковочного материала пищевых продуктов, изделия, используемые в строительстве в качестве отделочно-декоративного материала, химической промышленности для хранения и транспортировки различных химических веществ и т.д. Способ получения деформированных полуфабрикатов из алюминиевого сплава включает приготовление расплава, содержащего алюминий, железо и кремний, получение слитка путем кристаллизации расплава, получение деформированных полуфабрикатов путем деформации слитка и отжиг деформированных полуфабрикатов, при этом расплав готовят на основе алюминия, полученного по технологии инертного анода, при следующем соотношении компонентов в расплаве, мас. %: железо - 0,5-1,6, кремний - 0,25-0,4, алюминий - остальное, при отношении железа к кремнию, составляющем 2-4, кристаллизацию расплава проводят со скоростью охлаждения не менее 20 К/с, деформацию слитка проводят по меньшей мере в 2 этапа с промежуточным отжигом между этапами при 300-450°C, на первом этапе со степенью деформации не менее 90%, на последующем этапе со степенью деформации не менее 60%, отжиг готового деформированного полуфабриката проводят при 300-400°C, при этом получают деформированные полуфабрикаты со структурой, содержащей алюминиевую матрицу с содержанием кремния до 0,1 мас. % и равномерно распределенными частицами фазы Al8Fe2Si со средним поперечным размером не более 1 мкм и массовой долей от 0,5 до 2%. Техническим результатом изобретения является создание нового деформированного сплава, выполненного в виде тонколистового проката, плиты, фольги и проволоки с высоким комплексом механических и электрических свойств, в частности с временным сопротивлением после отжига, превышающим 130 МПа, электропроводностью более 60% IACS, относительным удлинением, превышающим 20%. 4 з.п. ф-лы, 4 ил., 2 табл., 3 пр.

Изобретение относится к области металлургии, в частности к бор-содержащим алюмоматричным композиционным материалам, и может быть использовано при получении изделий, к которым предъявляются требования низкого удельного веса в сочетании, в частности, с высоким уровнем поглощения при нейтронном излучении. Способ включает приготовление алюминиевого расплава, содержащего 0,5-0,9% Si, l,3-1,9% Mg, 0,2-0,4% Cu, формирование в нем бор-содержащих частиц путем введения в расплав лигатуры, содержащей бор, при поддержании его температуры в пределах от 850 до 930°C в течение 30-45 минут, получение слитка путем кристаллизации расплава, его гомогенизацию, получение листов путем прокатки слитка и их термообработку, при этом получают листы со структурой композиционного материала, содержащей равномерно распределенные в алюминиевой матрице включения AlB2 со средним размером не более 30 мкм и массовой долей от 4 до 8%. Техническим результатом изобретения является повышение механических свойств катаных листов из алюмоматричного бор-содержащего композиционного материала. 2 табл., 1 ил., 2 пр.

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, и может быть использовано при получении изделий, работающих в диапазоне температур до 350°С. Сплав содержит, мас.%: 0,6-1,5 Cu; 1,2-1,8 Mn; 0,2-0,6 Zr; 0,05-0,25 Si; 0,1-0,4 Fe; 0,01-0,3 Cr; Al остальное, при этом сплав содержит цирконий в своей структуре в виде наночастиц фазы Al3Zr с размером не более 20 нм, а марганец преимущественно образует вторичные выделения фазы Al20Cu2Mn3 с размером не более 500 нм в количестве не менее 2 об.%. Способ получения деформированного полуфабриката из упомянутого сплава включает приготовление расплава и получение литой заготовки путем кристаллизации расплава при температуре, не менее чем на 50°С превышающей температуру ликвидуса, деформирование литой заготовки в два этапа с промежуточным отжигом при 340-450°С при температуре, не превышающей 350°С, с получением промежуточного деформированного полуфабриката, отжиг полученного полуфабриката при температуре 340-450°С и его деформирование при комнатной температуре до получения готового деформированного полуфабриката и отжиг готового деформированного полуфабриката при температуре 300-400°С. Технический результат заключается в повышении прочности, термостойкости и электропроводности сплава на основе алюминия, а также деформированных полуфабрикатов в виде листов, прутков, проволоки, штамповок, труб, выполненных из него. 2 н. и 5 з.п. ф-лы, 6 пр., 8 табл., 3 ил.

Изобретение относится к области металлургии, в частности к способам получения отливок сплавов на основе гамма алюминида титана, и может быть использовано при получении изделий ответственного назначения, работающих при температурах до 700°C, в частности лопаток газотурбинных двигателей. Способ получения литого сплава на основе гамма алюминида титана для фасонных отливок включает получение смеси порошков, формирование из нее брикета и проведение самораспространяющегося высокотемпературного синтеза. Получают смесь порошков из чистых металлов, содержащую титан, алюминий, ниобий и молибден в количестве, мол.%: алюминий 40-44, ниобий 3-5, молибден 0,6-1,4, титан - остальное. Брикет формируют с относительной плотностью 50-85 % и подвергают его термовакуумной обработке при температуре 550-650°C в течение 10-40 мин, скорости нагрева 5-40°C/мин и давлении 10-1-10-3 Па, а СВС проводят при начальной температуре 560-650°C. Получают отливки заданной конфигурации с высоким уровнем механических свойств при повышенных температурах. 2 ил., 2 табл., 2 пр.

Изобретение относится к области металлургии, а именно к литейным сплавам на основе магния, и может быть использовано при получении деталей для авиакосмической промышленности, работающих под действием высоких нагрузок при температурах до 150°С и 250°С кратковременно. Литейный сплав на основе магния содержит, масс.%: алюминий 7,5-9,0, цинк 0,2-0,8, марганец 0,15-0,5 и кальций 0,1-0,4, магний - остальное. Сплав характеризуется высокими механическими свойствами, а также температурой возгорания сплава - не ниже 650°С, температурой солидуса при равновесной кристаллизации - не менее 460°С, объемной долей выделений фазы Al2Ca - не выше 0,75%. 5 ил., 2 табл., 3 пр.

Изобретение относится к области металлургии, в частности к способам термообработки отливок сплавов на основе гамма алюминида титана, и может быть использовано при получении изделий ответственного назначения, работающих при температурах до 800°С, в частности лопаток газотурбинных двигателей. Способ термообработки отливок из сплавов на основе гамма алюминида титана включает горячее изостатическое прессование, охлаждение до комнатной температуры и последующий нагрев при температуре ниже эвтектоидного превращения сплава. Горячее изостатическое прессование проводят при температуре выше эвтектоидного превращения сплава в фазовой области α+β+γ при следующем количестве фаз в сплаве, мас.%: бета-фаза (β) от 7 до 18, гамма-фаза (γ) от 5 до 16, альфа-фаза (α) - остальное. Снижается время термообработки, при этом сплавы имеют высокий уровень механических свойств. 1 з.п. ф-лы, 2 ил., 1 табл., 1 пр.

Изобретение относится к области металлургии, в частности к борсодержащим алюмоматричным композиционным материалам, и может быть использовано при получении изделий, к которым предъявляются требования низкого удельного веса в сочетании с высоким уровнем поглощения при нейтронном излучении. Способ получения материала в виде литой заготовки включает приготовление алюминиевого расплава, содержащего 1-2 мас.% железа и 0,2-0,6 мас.% кремния, введение в расплав при температуре 900-1100°С бора в виде борной кислоты и титана в виде стружки в соотношении, позволяющем получить в литой структуре частицы диборида титана в количестве от 4 до 8 мас.%, и кристаллизацию путем литья в форму. Техническим результатом изобретения является создание экономичного способа получения содержащего бор композиционного материала на основе алюминия, обладающего высоким уровнем поглощения нейтронного излучения в сочетании с наилучшими механическими свойствами и технологичностью. 5 пр., 2 табл., 1 ил.
Изобретение относится к области металлургии, в частности к содержащим бор алюмоматричным композиционным материалам, и может быть использовано при получении изделий, к которым предъявляются требования низкого удельного веса в сочетании со специальными свойствами, в частности высокий уровень поглощения при нейтронном излучении. Композиционный материал содержит медь, марганец, цирконий, железо, кремний бор и имеет структуру, состоящую из алюминиевого твердого раствора и равномерно распределенных в нем фаз при следующем их соотношении в твердом растворе, в мас.%: 6-15 В4С, 2-6 Al15(Fe, Mn)3Si2, 2-6 Al20Cu2Mn3, 0,4-0,8 Al3Zr. Техническим результатом изобретения является повышение термостойкости материала к нагревам до 350°С при достаточном уровне механических свойств, составляющих: временное сопротивление (σв) - не менее 450 МПа, предел текучести (σ0,2) - не менее 400 МПа, относительное удлинение (δ) - не менее 4%, твердость не менее 2,7 ГПа. 1 з.п. ф-лы, 1 табл., 5 пр.

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150°С, деталей летательных аппаратов, автомобилей и других транспортных средств, деталей спортинвентаря и др

Изобретение относится к области металлургии и может быть использовано для изготовления отливок, предназначенных для получения деталей ответственного назначения, работающих под действием высоких нагрузок при температурах до 300-350°С, автомобильных двигателей, деталей водозаборной арматуры, ступеней погружного насоса для нефтегазового комплекса, деталей радиаторов отопления и др

Изобретение относится к области металлургии, в частности к деформируемым материалам на основе алюминия, и может быть использовано при получении изделий, работающих при повышенных температурах до 350°С

Изобретение относится к области металлургии, а именно к сплавам на основе алюминия, и может быть использовано при получении деталей автомобильных двигателей, работающих под действием высоких нагрузок при температурах до 150-200°С: головки цилиндров, корпуса водяных насосов, впускные трубы и др

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий электротехнического назначения, в частности проводов высоковольтных ЛЭП

Изобретение относится к металлургии, в частности к деформируемым сплавам на основе алюминия, и может быть использовано при получении изделий, работающих в широком диапазоне температур, до 350°С

 


Наверх