Патенты автора Будадин Олег Николаевич (RU)

Изобретение относится к области измерительной техники и может быть использовано для оценки надежности сложных пространственных конструкций из полимерных композитных материалов (ПКМ), в том числе с металлическими элементами, на основе результатов контроля величины деформации при их нагружении статической или динамической нагрузкой. Сущность: осуществляют размещение в конструкции из ПКМ в процессе ее изготовления оптического волокна с волоконно-оптическими брэгговскими решетками (ВБР), при этом ВБР располагаются в наименее прочных местах конструкции, измерение спектрального положения пиков ВБР после изготовления конструкции из ПКМ, определение деформаций внутри конструкции из ПКМ путем решения соответствующей системы уравнений, описывающих математическую связь между оптическими характеристиками оптических волокон с ВБР и деформацией изделия. После размещения в конструкции из ПКМ в процессе ее изготовления оптического волокна с ВБР, при этом ВБР располагаются в наименее прочных местах конструкции, не демонтируя баллон из автомобиля, измеряют остаточную деформацию δij после первого цикла нагружения «нагрузка-разгрузка», в данном случае i=1, путем подключения к оптоволоконной линии, расположенной в баллоне, специального измерительного устройства. Не демонтируя баллон из автомобиля, измеряют остаточную деформацию δij после каждого цикла нагружения «нагрузка-разгрузка», измеряют коэффициент изменения скорости изменения между циклами остаточной деформации, измеряют величину внутреннего напряжения материала в точке измерения деформации, определяют коэффициент качества и надежности конструкции баллона в процессе эксплуатации и ресурс его работы. Технический результат: повышение качества достоверной диагностики конструкции автомобильного газового баллона из полимерного композиционного материала и оценки их ресурса в процессе эксплуатации на транспортном средстве без демонтажа при многократном нагружении и возможность применения на практике для широкого круга объектов, эксплуатируемых в условиях постоянных и переменных нагрузок, с использованием простого и точного оборудования. 2 н. и 1 з.п. ф-лы, 7 ил.

Группа изобретений относится к области измерительной техники и может быть использована для оценки надежности изделий из полимерных композитных материалов (ПКМ), в том числе с металлическими слоями, на основе результатов контроля величины деформации при их нагружении статической или динамической нагрузкой. Способ включает определение исходного спектрального положения пиков брэгговских решеток, размещение оптического волокна с брэгговскими решетками вдоль всей конструкции между монослоями композиционного материала, восприимчивыми к механической деформации, в процессе ее изготовления, после изготовления повторное измерение спектрального положения пиков брэгговских решеток и определение величины суммарной, возникающей в результате механического и температурного воздействия, деформации конструкции путем измерения спектрального положения пиков брэгговских решеток. С использованием термографической аппаратуры отдельно измеряют температурное поле наружного участка поверхности контролируемой конструкции в области расположения оптического волокна с брэгговскими решетками. Рассчитывают температурное поле конструкции во внутренней области расположения упомянутого оптического волокна по измеренным результатам температурного поля наружного участка поверхности. С учетом рассчитанного температурного поля во внутренней области и температурного поля наружного участка поверхности конструкции из суммарной деформации выделяют составляющую деформации от силовой нагрузки и деформацию от внутренней температуры. Технический результат - повышение точности определения внутренней деформации изделий под нагрузкой, повышение достоверности обнаружения локальных участков пониженной прочности, повышение достоверности результатов оценки технического и эксплуатационного состояния сложных конструкций и их элементов из ПКМ. 2 н. и 2 з.п. ф-лы, 5 ил.

Использование: для контроля конструкции баллона давления из полимерного композиционного материала (ПКМ) с металлическим лейнером. Сущность изобретения заключается в том, что Способ контроля баллонов давления из ПКМ с металлическим лейнером включает размещение в процессе изготовления баллона оптического волокна с волоконной брэгговской решеткой (ВБР) между армирующими слоями ПКМ баллона давления, восприимчивыми к механической деформации, определение исходного спектрального положения пиков ВБР, нагружение баллона внутренним давлением и осуществление повторного измерения спектрального положения пиков ВБР, регистрацию величины деформации конструкции по результатам измерения спектрального положения пиков ВБР. Регистрацию деформации δk=f(P) в точках композитной оболочки (k) осуществляют с момента начала нагружения баллона внутренним давлением при величинах внутреннего давления (P1, Р2, …, Pn, …, Pmax), здесь k - номер точки в композитной конструкции, в которой осуществляется измерение деформации, n - номер величины давления нагружения, при которой регистрируется деформация, Р - величина внутреннего давления нагружения, изменяющаяся от Р=0 до Р=Pmax, где Pmax - наибольшая величина давления нагружения. Регистрируют величины Pn и точек k, где δk>0. Определяют величины εk отслоения лейнера от оболочки в зависимости от характеристик лейнера и внутреннего давления. Технический результат: повышение достоверности результатов оценки технического и эксплуатационного состояния конструкций баллонов из ПКМ. 2 н.п. ф-лы, 8 ил.

Изобретение относится к области медицины и может быть использовано для распознавания структуры ядер бластов крови и костного мозга с применением световой микроскопии в сочетании с компьютерной обработкой данных. Согласно изобретению получают цветное изображение мазков крови и/или костного мозга, используя компьютерный анализатор, выделяют на изображении лейкоциты и получают их бинарное изображение, на бинарном изображении лейкоцитов последовательным сканированием проводят процедуру заполнения пустот, измеряют пространственно-яркостное распределение пикселей изображения и определяют значение текстурных признаков, характеризующих структуру ядра, для представлений цветовых моделей лейкоцитов, на основе текстурных признаков формируют матрицу числовых текстурных признаков структуры ядра, в столбцах которой указаны значения текстурных признаков, а в строках приведены изображения лейкоцитов, используемые для распознавания структуры ядер бластов. Определение значений текстурных признаков, характеризующих структуру ядра лейкоцитов, осуществляют для четырех направлений смежности, при этом текстурный признак «локальная однородность» для красного компонента цветного изображения определяют с использованием расстояний смежности в одиннадцать пикселей, текстурный признак «момент инерции» для красного компонента цветного изображения определяют путем расчета для расстояния смежности в два пикселя, текстурный признак «момент инерции» для синего компонента цветного изображения определяют с использованием расстояний смежности в семь пикселей, текстурный признак «энтропия» для синего компонента цветного изображения определяют с использованием расстояний смежности в шесть пикселей и текстурный признак «энергия» для синего компонента цветного изображения определяют с использованием расстояний смежности в шесть пикселей. Изобретение обеспечивает повышение достоверности постановки диагноза за счет использования признаков, позволяющих обеспечить высокую информативность. 5 з.п. ф-лы, 5 ил.

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для диагностики меланомы кожи. Способ включает регистрацию дерматоскопического видеоизображения кожи; измерение и выделение пораженного участка на видеоизображении; измерение координат и сегментировании изображения характерного участка; выбор диагностического признака изображения для формирования диагноза; измерение параметров признака и сравнение параметров выбранного признака с библиотекой заранее определенных параметров признака, формирование диагноза на основе сравнения параметров признака, выбранного из группы признаков: цвет, граница, асимметрия и текстура изображения с параметрами диагностического признака изображения. После регистрации дерматоскопического видеоизображения участка кожи и перед выбором диагностического признака изображения для формирования диагноза осуществляют следующие действия: задают критерий качества видеоизображения кожи для обеспечения достоверного анализа видеоизображения и диагностики меланомы, проводят повторную по меньшей мере одну регистрацию дерматоскопического видеоизображения того же участка кожи, измеряют значения пикселей зарегистрированного видеоизображения, накладывают зарегистрированные цифровые видеоизображения участков кожи друг на друга, измеряют значения пикселей наложенного видеоизображения, измеряют среднее значение величины пикселей наложенных видеоизображений, измеряют среднеквадратичное отклонение величин пикселей наложенных видеоизображений, характеризующее величину шума, определяют отношение сигнал/шум (С/Ш) для наложенных видеоизображений, определяют необходимость продолжения регистрации видеоизображений кожи, сравнивая полученное отношение (С/Ш) с заданным критерием качества видеоизображения. Далее выбирают характерные участки всего зарегистрированного изображения кожи по признаку наличия интенсивности аномалий, определяют пороговое значение бинаризации по всей площади изображения, определяют адаптивное пороговое значение бинаризации по характерным участкам изображения, осуществляют бинаризацию и измеряют полученные результаты по всей площади зарегистрированного изображения путем сравнения значений пикселей с пороговым значением. Осуществляют бинаризацию и измеряют полученные результаты по характерным участкам площади изображения. И измеряют результаты комбинированной бинаризации, полученной путем наложения операцией «логическое И» измеренных результатов бинаризации изображения на результат бинаризации адаптивного порога для снижения уровня шумов фона и однородностей внутри площади изображения меланомы. Осуществляют дилатацию изображения комбинированной бинаризации. Осуществляют эрозию измеренного комбинированного бинаризованного изображения для сглаживание краев линий, скелетизацию измеренного комбинированного бинаризованного изображения со сглаженными краями линий, формирующих скелет линий, фильтрацию скелетизации измеренного комбинированного бинаризованного изображения и измерение полученных результатов для устранения ложных отростков скелетных линий. Изобретение обеспечивает повышение объективности, информативности и достоверности при постановке диагноза меланомы кожного покрова. 4 з.п. ф-лы., 5 ил., 1 табл.

Изобретение относится к методам неразрушающего контроля для фиксации положения и измерения размеров малоразмерных металлических включений (ММВ). Устройство фиксации положения и размеров малоразмерных металлических включений в изделиях из непроводящих материалов снабжено дополнительным вихретоковым преобразователем, идентичным первому вихретоковому преобразователю, выходы измерительных катушек которого соединены с соответствующими входами первого коммутатора, и снабжено дополнительным коммутатором, первый и второй выходы которого соединены с соответствующими входами вихретоковых преобразователей, являющимися входами возбуждающих катушек, а вход дополнительного коммутатора соединен с выходом генератора гармонических колебаний, при этом в микропроцессоре реализован алгоритм определения положения и размеров малоразмерных металлических включений посредством фиксации значений величин сигналов максимального вносимого напряжения Umax и минимального вносимого напряжения Umin и сравнения их со значениями из набора плоскостей состояния, находящегося в памяти микропроцессора. Технический результат – повышение эффективности контроля за счет фиксации положения и измерения размеров ММВ. 6 ил., 1 табл.

Изобретение относится к области измерительной техники. Способ оптического контроля безопасности эксплуатации конструкций из полимерных и металлополимерных композитных материалов включает использование оптоволоконной линии, которая содержит волоконные брэгговские решетки и выполнена в защитном акрилатном покрытии, интегрирование оптоволоконных линий на стадии изготовления в конструкцию из полимерных и металлополимерных композитных материалов, нагружение изготовленной конструкции из полимерных и металлополимерных композитных материалов с интегрированными оптоволоконными линиями, выбор локальных областей расположения волоконных брэгговских решеток в конструкции из полимерных и металлополимерных композитных материалов для проведения измерений механической деформации, измерение механической деформации в локальных областях интегрирования волоконных брэгговских решеток во всем диапазоне нагружения конструкции из полимерных и металлополимерных композитных материалов, сравнение величин измеренных механических деформаций с предельно допустимой величиной, формирование заключения о безопасности эксплуатации конструкции из полимерных и металлополимерных композитных материалов, согласно изобретению дополнительно выполняют следующие действия, а именно перед интегрированием оптоволоконной линии в конструкцию из полимерных и металлополимерных композитных материалов оптоволоконную линию погружают в раствор полисульфона марки ПСФФ-30 в диметилформамиде и выдерживают при температуре в диапазоне 20-30 °С в течение 7-8 ч, затем вынимают и просушивают на воздухе в течение 5-7 мин, а оптоволоконные линии интегрируют в конструкцию из полимерных и металлополимерных композитных материалов между слоями армирующего наполнителя в направлении армирования хотя бы одного из слоев армирующего наполнителя, при этом направление армирования второго слоя армирующего наполнителя не должно отличаться более чем на 45° от первого. Технический результат - повышение качества и достоверности обнаружения локальных участков пониженной прочности конструкций из полимерных и металлополимерных композитных материалов, повышение достоверности диагностики технического состояния сложных конструкций. 6 ил.

Изобретение относится к измерительной технике. Согласно способу определяют коэффициент излучения контролируемой поверхности объекта, для чего с помощью бесконтактного термографа измеряют температуру поверхности объекта Т(εк), где εк - коэффициент излучения поверхности объекта, наносят на поверхность объекта образцовый материал, измеряют с помощью бесконтактного термографа температуру поверхности образцового материала Т0(ε0), где ε0 - коэффициент излучения поверхности образцового материала, определяют коэффициент излучения поверхности объекта εк путем решения уравнения: Т(εк)=Т0(ε0). Проводят тепловой контроль с использованием измеренного коэффициента поверхности объекта. Перед началом теплового контроля выбирают калибровочный образец с температурой Тп, образцовый материал с коэффициентом излучения (ε0) наносят на поверхность калибровочного образца с температурой Тп, измеряют с помощью бесконтактного термографа температуру образцового материала Т(ε0) на поверхности калибровочного образца, определяют значение коэффициента излучения образцового материала (ε0), нанесенного на поверхность калибровочного образца, решая уравнение Тп=T(ε0), наносят образцовый материал на поверхность объекта, в поле обзора бесконтактной термографической аппаратуры помещают поверхность объекта с нанесенным образцовым материалом с коэффициентом излучения (ε0), измеряют температуру поверхности объекта с нанесенным образцовым материалом - T(ε0), измеряют температуру Т(εк) поверхности объекта вне нанесенного на нее образцового материала. С учетом значения коэффициента излучения образцового материала (ε0), нанесенного на объект, определяют значение коэффициента излучения поверхности (εк) объекта, решая уравнение Т(εк)=T(ε0). Определяют температуру с использованием определенного значения коэффициента излучения поверхности (εк) объекта и проводят тепловой контроль объекта. Технический результат - повышение достоверности контроля состояния обследуемого объекта за счет точного определения коэффициента излучения его поверхности. 7 з.п. ф-лы, 5 ил., 1 табл.

Изобретение относится к медицине, а именно к онкоурологии, и может быть использовано для определения степени злокачественности аденокарциномы предстательной железы. Для этого формируют компьютерную базу знаний на основе эталонных изображений препаратов с ранее верифицированным диагнозом. Проводят биопсию ткани предстательной железы пациента и получают гистологический препарат. Цифровое изображение гистологического препарата вносят в память компьютера. Проводят анализ изображения полученного препарата путем сравнения с базой данных. При этом на цифровом изображении исследуемого препарата определяют количественные характеристики ацинусов и эпителиальных клеток. По сравнению изображения гистологического препарата с эталонными изображениями из базы знаний и результатам автоматической классификации принадлежности к типам нарушений гистологической структуры опухоли по шкале Глисона определяют степень злокачественности. Изобретение позволяет определить степени злокачественности аденокарциномы предстательной железы у пациента. 7 ил., 1 пр.

Изобретение относится к методам неразрушающего контроля и может быть использовано для обнаружения малоразмерных металлических включений в изделиях из полимерных композитных материалов, а также в любых непроводящих материалах. Устройство включает первый - четвертый усилители (1, 4, 5, 9), первый - второй синхронные детекторы (2, 3), двухканальный аналого-цифровой преобразователь (6), блок обработки (7), индикатор (8) и индукционный преобразователь (11). Вход первого усилителя (1) соединен с индукционным преобразователем (11), а его выход - с первыми входами первого и второго синхронных детекторов (2, 3). Выход первого синхронного детектора (2) соединен с входом второго усилителя (4). Выход второго синхронного детектора (3) соединен с входом третьего усилителя (5). Выходы второго и третьего усилителей (4, 5) соединены с входами двухканального аналого-цифрового преобразователя (6); а его выход - с входом блока обработки (7). Первый выход блока обработки (7) соединен со вторыми входами первого и второго синхронных детекторов (2, 3), второй его выход соединен с входом четвертого усилителя (9), а третий его выход - с входом индикатора (8). Выход четвертого усилителя (9) соединен с входом индукционного преобразователя (11). Между индукционным преобразователем и первым усилителем подключен коммутатор (10). Индукционный преобразователь (11) включает возбуждающую катушку индуктивности (11.1) и измерительные катушки индуктивности, выходы которых соединены с соответствующими входами коммутатора (10) и которые концентрично расположены внутри возбуждающей катушки индуктивности (11.1); количество измерительных катушек индукционного преобразователя и их радиусы определены, исходя из предполагаемой глубины залегания и размеров металлических включений и необходимой погрешности определения местоположения малоразмерных металлических включений. Вход индукционного преобразователя (11) является входом возбуждающей катушки индуктивности (11.1). Технический результат: повышение достоверности обнаружения малоразмерных металлических включений. 1 з.п. ф-лы, 10 ил.

Изобретения относятся к области измерительной техники и могут быть использованы для оценки надежности сложных пространственных конструкций из полимерных композиционных материалов (ПКМ). Способ термографии включает в себя пропускание электрического тока допустимого уровня через изделие для его разогрева с помощью электрогенератора. Затем производят регистрацию температурного поля с помощью термографической аппаратуры, данные заносят в блок обработки сигналов. При достижении температуры, превышающей температуру окружающей среды, данные заносят в блок памяти. Затем к изделию прикладывают силовое воздействие. Силовую нагрузку проводят с помощью системы нагружения изделия, по команде блока управления. По окончании действия нагрузки термографическая аппаратура снимает новое температурное поле и заносит данные в блок памяти. После этого данные температурных полей вычитаются в сумматоре, после чего разность поступает в пороговое устройство для сравнения с пороговой температурой. Локализованные таким образом дефекты регистрируются в регистраторе. Отправкой команд занимается электронный блок управления. Технический результат - повышение достоверности результатов оценки технического и эксплуатационного состояний сложных конструкций из ПКМ. 2 н. и 2 з.п. ф-лы, 7 ил.

Изобретения относятся к области измерительной техники и могут быть использованы для оценки надежности сложных пространственных конструкций из полимерных композиционных материалов (ПКМ) на основе результатов теплового контроля при нагружении изделий механическими колебаниями. Термотомографический способ определения глубины залегания внутренних дефектов контролируемого изделия включает предварительное построение градуировочной зависимости наибольшего изменения температуры на поверхности контролируемого изделия при наличии и отсутствии внутреннего дефекта в изделии от глубины расположения дефекта, построение градуировочной зависимости, последующее возбуждение ультразвуковых колебаний в контролируемом изделии, регистрацию абсолютного значения изменения температурного поля поверхности контролируемого изделия на внутреннем дефекте во времени в течение времени ультразвукового воздействия и после его прекращения до остывания, регистрацию наибольшего значения и измерение соответствующего значения времени, отсчитываемого с момента прекращения ультразвукового воздействия. Согласно изобретению осуществляют регистрацию температурного поля одновременно на двух поверхностях контролируемого изделия и определяют глубину залегания дефекта внутри контролируемого изделия по полученным результатам. Раскрыто устройство для осуществления способа. Технический результат - обеспечение определения глубины залегания внутренних дефектов с необходимой для практики точностью, повышение достоверности обнаружения локальных участков пониженной прочности, повышение достоверности результатов оценки технического, эксплуатационного состояния и расширение области использования сложных конструкций и их элементов из ПКМ. 2 н. и 4 з.п. ф-лы, 8 ил.

Изобретения относятся к области измерительной техники и могут использоваться для оценки погрешности контроля качества композитных броневых преград на основе результатов теплового контроля при попадании поражающего элемента в броневую преграду за счет поглощения энергии броневой преградой, а также для проведения непосредственно контроля. Согласно способу осуществляют силовое нагружение волокон слоев текстильного бронематериала, в процессе нагружения строят диаграмму деформации волокон, измеряют скорость деформации волокон, измеряют динамическое температурное поле в нескольких точках по их длине и температуру окружающей среды. Определяют коэффициент теплового эффекта, энергию поглощения текстильного бронематериала преградой, погрешность измерения величины поглощения энергией тепловым методом текстильной броневой преграды при взаимодействии с поражающим элементом и сравнивают ее величину с допустимой величиной погрешности измерений, по результатам делают заключение о применимости методики. Для реализации способа используют устройство. Технический результат – повышение информативности и достоверности результатов контроля текстильных композитных броневых преград. 2 н. и 3 з.п. ф-лы, 1 табл., 6 ил.

Группа изобретений относится к области измерительной техники и может быть использована для оценки надежности и качества изделий из материалов, имеющих большой разброс характеристик. Согласно способу в контролируемом изделии устанавливают эталонный дефект, соответствующий по характеристикам реальным дефектам в изделии и имеющий минимальные размеры в начале траектории сканирования. Перед проведением контроля измеряют величину сигнала на контролируемом изделии вблизи эталонного дефекта. Измеряют величину изменения сигнала на эталонном дефекте. Устанавливают величину порогового сигнала для выявления дефектов. Измеряют длительность сигнала, соответствующего протяженности эталонного дефекта вдоль траектории сканирования. Измеряют градиент сигнала на эталонном дефекте вдоль траектории сканирования. В процессе контроля изделия при сканировании измеряют градиент текущего сигнала. Осуществляют корректировку текущего значения сигнала вдоль траектории. Фиксируют аномальные зоны, сравнивая текущее значение сигнала по траектории сканирования с пороговым значением сигнала. Измеряют протяженность аномалии вдоль траектории сканирования и перпендикулярно траектории сканирования и фиксируют дефекты в изделии, сравнивая одновременно протяженность выявленной аномалии с протяженностью эталонного дефекта следующим образом. Охарактеризовано устройство автоматизированного пространственного контроля сплошности изделий, реализующее способ. Технический результат - повышение достоверности контроля качества сплошности многослойных сложных конструкций и их элементов в процессе производства и в реальных условиях эксплуатации. 2 н.п. ф-лы, 12 ил., 1 табл.

Группа изобретений относится к области измерительной техники и может быть использована для контроля качества композитных броневых преград на основе результатов теплового контроля при попадании поражающего элемента в броневую преграду. Способ включает направление с заданной скоростью поражающего элемента на многослойную броневую преграду, представляющую собой текстильный бронематериал, слои которого состоят из волокон, регистрацию температурного поля Тан(х, у) поверхности текстильного бронематериала после взаимодействия с поражающим элементом, определение на основании анализа температурного поля Тан(х, у) энергии поглощения текстильного бронематериала. Согласно изобретению осуществляют силовое нагружение волокон слоев текстильного бронематериала, в процессе нагружения строят диаграмму деформирования упомянутых волокон, измеряют скорость деформации волокон, измеряют динамическое температурное поле в нескольких точках по длине волокон, измеряют температуру окружающей среды. После взаимодействия с поражающим элементом определяют энергию, выделившуюся в виде тепла на поверхности текстильного бронематериала, и определяют энергию поглощения текстильного бронематериала преградой. Для осуществления способа используют устройство теплового контроля поглощения энергии поражающего элемента многослойной броневой преградой. Технический результат - повышение информативности и достоверности результатов контроля текстильных композитных броневых преград. 2 н. и 2 з.п. ф-лы, 6 ил., 2 табл.

Использование: для комплексного автоматизированного неразрушающего контроля качества многослойных изделий. Сущность изобретения заключается в том, что устройство включает два ультразвуковых преобразователя теневого контроля, ультразвуковой дефектоскоп теневого контроля, пороговое устройство ультразвукового дефектоскопа теневого контроля, датчик позиционирования, электронный блок датчика позиционирования, регистрирующее устройство, преобразователь акустического дефектоскопа для осуществления метода свободных колебаний, акустический дефектоскоп для осуществления метода свободных колебаний, пороговое устройство акустического дефектоскопа для осуществления метода свободных колебаний, электронный ключ, блок задержки. Два ультразвуковых преобразователя теневого контроля выполнены с возможностью установки для акустической связи с контролируемым изделием. Выходы двух ультразвуковых преобразователей теневого контроля подключены к соответствующим входам ультразвукового дефектоскопа теневого контроля. Выход ультразвукового дефектоскопа теневого контроля подключен к входу порогового устройства ультразвукового дефектоскопа теневого контроля. Выход порогового устройства ультразвукового дефектоскопа теневого контроля подключен к первому входу регистрирующего устройства. Выход датчика позиционирования через электронный блок датчика позиционирования подключен ко второму входу регистрирующего устройства. Второй выход порогового устройства ультразвукового дефектоскопа теневого контроля подключен к первому входу электронного ключа. Выход преобразователя акустического дефектоскопа для осуществления метода свободных колебаний подключен к входу акустического дефектоскопа для осуществления метода свободных колебаний. Выход акустического дефектоскопа для осуществления метода свободных колебаний подключен к входу порогового устройства акустического дефектоскопа для осуществления метода свободных колебаний. Ко второму входу электронного ключа подключен выход порогового устройства акустического дефектоскопа для осуществления метода свободных колебаний. Выход электронного ключа подключен к первому входу блока задержки. Ко второму входу блока задержки подключен второй выход электронного блока датчика позиционирования. Выход блока задержки подключен к третьему входу регистрирующего устройства. Технический результат: повышение информативности и производительности неразрушающего контроля качества многослойных изделий. 8 ил., 1 табл.

Использование: для неразрушающего контроля качества изделий. Сущность изобретения заключается в том, что сканируют поверхность контролируемого объекта датчиками физических полей, измеряют величины сигналов с каждой точки поверхности контролируемого объекта, разбивают диапазон величин сигналов по их значениям на I интервалов, регистрируют измеренные сигналы по принадлежности к соответствующим интервалам, определяют количество измеренных сигналов в каждом интервале, рассчитывают разность количества измеренных сигналов в последующем и предыдущем интервалах по всему диапазону значений величин измеренных сигналов, в качестве порогового значения величины сигнала излучения физического поля выбирают значение из интервала, для которого разность количества измеренных сигналов в данном и предыдущем интервалах меньше нуля, а разность количества измеренных сигналов в данном и последующем интервалах больше нуля. Принимают, что сигнал на дефектном участке меньше по величине сигнала на качественном участке, вероятность ложного обнаружения дефектов и вероятность пропуска дефектов, исходя из задач контроля. Измеряют величину сигнала в центре интервала, на который попадает наибольшее количество сигналов дефектного участка. Измеряют величину сигнала в центре интервала, на который попадает наибольшее количество сигналов качественного участка. Измеряют номер интервала m, соответствующего величине 0,67 , и номер интервала n, соответствующего 0,67 . Дополнительно измеряют величину сигнала в центре интервала m и в центре интервала n. Определяют среднеквадратичное значение распределения сигналов на дефектных участках. Определяют среднеквадратичное значение распределения сигналов на качественных участках. Задают соотношение между величинами вероятностей ложного обнаружения и пропуска дефектов: и . Определяют численное значение порогового сигнала путем решения приведенного уравнения. Технический результат: обеспечение возможности повысить достоверность выявления дефектов и обеспечить выявление дефектов с заданной вероятностью. 5 ил., 1 табл.

Изобретения относятся к измерительной технике. Способ заключается в измерении местоположения по глубине преграды слоя нитей, имеющих наибольшее энергопоглощение. Для его осуществления используют устройство, включающее устройство измерения скорости поражающего элемента, устройство для стрельбы и регистратор, тепловизионную систему, устройство регистрации начала полета поражающего элемента, счетчик кадров, первый и второй логические блоки «если», электронный ключ, первый - третий сумматоры, первый - второй инверторы блок задержки, первый - второй умножители. Тепловизионная система расположена таким образом, чтобы поле обзора ее оптической части охватывало место соприкосновения поражающего элемента и композитной броневой преграды. Технический результат - повышение информативности и достоверности результатов испытаний конструкций броневых преград, имеющих многослойную конструкцию, без толстой подложки, т.е. максимально приближенных к реальным условиям эксплуатации. 2 н. и 1 з.п. ф-лы, 10 ил.

Использование: для автоматизированного неразрушающего контроля качества изделий. Сущность изобретения заключается в том, что сканируют поверхность контролируемого объекта по крайней мере одним информационным датчиком физического поля, измеряют величины сигналов излучения физического поля с каждой точки поверхности контролируемого объекта, разбивают весь диапазон величин сигналов излучения физического поля по их значениям на I интервалов, регистрируют измеренные сигналы по принадлежности к соответствующим интервалам, определяют количество измеренных сигналов в каждом интервале КI, рассчитывают разность количества измеренных сигналов в последующем и предыдущем интервалах ΔКI=КI+1-КI по всему диапазону значений величин измеренных сигналов, а в качестве порогового значения величины сигнала излучения физического поля выбирают значение из интервала, для которого разность количества измеренных сигналов в данном и предыдущем интервалах меньше нуля, а разность количества измеренных сигналов в данном и последующем интервалах больше нуля, при этом измеряют величину сигнала в начале сканирования изделия на эталонном дефекте Un, измеряют значение сигнала на качественном участке изделия вблизи эталонного дефекта U0 в точке i=1, где i - целочисленная координата траектории сканирования на поверхности контролируемого изделия, измеряют изменение сигнала на эталонном дефекте ΔUn=|Un-U0|, измеряют шаг дискретности измерения сигналов по траектории сканирования: Δxi=xi+1-xi, измеряют значение сигнала в текущей точке «i» сканирования изделия (Ui), измеряют разность сигналов между соседними точками: ΔUi=Ui+1-Ui, регистрируют начало j-го дефекта по градиентному признаку, регистрируют координату (xнj) начала j-го дефекта по градиентному признаку, измеряют величину наибольшего сигнала в области j-го дефекта: Ujmax=Uji, если Ui+1>Ui и Ui+2>Ui+1, измеряют величину наибольшего изменения сигнала (ΔUmax∂j) на j-м дефекте, регистрируют окончание j-го дефекта по градиентному признаку, регистрируют координату (xкj) окончания j-го дефекта по градиентному признаку: xкj=Δxixр, где p - целочисленная координата окончания j-го дефекта, измеряют протяженность j-го дефекта по градиентному признаку: Δхдj=хкj-хнj, регистрируют наличие j-го дефекта на изделии заданным образом. Технический результат: обеспечение возможности оперативного и достоверного контроля качества сплошности многослойных сложных конструкций и их элементов в процессе производства и в реальных условиях эксплуатации. 2 н.п. ф-лы, 6 ил., 1 табл.

Использование: для автоматизированного контроля многослойных конструкций больших габаритов, изготовленных методом намотки. Сущность изобретения заключается в том, что выполняют определение ориентации дефектов на различных слоях изделия, создание атласа ориентации дефектов, регистрацию дефекта посредством создания контура и отнесение дефекта определенному слою путем сравнения ориентации обнаруженного дефекта с ориентацией возможных дефектов на различных слоях конструкции. Технический результат: повышение информативности неразрушающего контроля многослойных изделий и снижение погрешности определения глубины залегания. 2 з.п. ф-лы, 6 ил., 1 табл.

Группа изобретений относится к области измерительной техники, а именно к способу контроля качества композитных броневых преград из ткани и устройству для его осуществления. Способ включает установку композитной броневой преграды перед пластиной из пластичного материала, направление с заданной скоростью поражающего элемента на броневую преграду и определение энергии поглощения поражающего элемента. С момента взаимодействия броневой преграды и поражающего элемента регистрируют одновременно два пространственных поля на поверхности броневой преграды: температурное поле поверхности броневой преграды и поле видеоизображения поверхности. Накладывают контур видеоизображения на температурное поле, формируют новое измеренное температурное поле, а энергию поглощения композитной броневой преградой определяют на основе анализа нового температурного поля. Раскрыто устройство контроля качества композитных броневых преград из ткани для осуществления способа. Достигается повышение информативности и достоверности результатов контроля. 2 н. и 1 з.п. ф-лы, 5 ил.

Изобретение относится к области измерительной техники и может быть использовано для оценки стабильности технологии изготовления сложных пространственных конструкций из полимерных композиционных материалов (ПКМ). Способ включает регистрацию температурного поля изделий, выявление аномалий температурного поля, обусловленных концентраторами внутренних напряжений конструкции. После регистрации температурного поля поверхности i-го контролируемого изделия определяют среднее значение температуры на поверхности контролируемого изделия, калибруют среднее значение i-го изделия по среднему значению температуры 1-го изделия для обеспечения средних значений температурных полей всех изделий с целью достоверного сравнения температурных полей различных изделий. Калибруют температурное поле поверхности i-го изделия по температурному полю 1-го изделия. Измеряют отклонение температуры в координатах m, n от среднего значения температуры поверхности контролируемого изделия. Определяют среднеквадратичное отклонение температуры по контролируемой поверхности. Сравнивают по абсолютной величине среднеквадратичное отклонение отклонений температурного поля 1-го и i-го изделий. Сравнивают разницу среднеквадратичных отклонений с заданным критерием стабильности и определяют стабильность Ki структуры и технологии i-го изделия. В случае если Ki=0, осуществляют регистрацию областей нестабильности структуры поверхности контролируемого объекта путем измерения разности температурных полей i-го и 1-го изделий и определения координат mд, nд участка поверхности с нарушенной структурой следующим образом. Повторяют операции для всей партии контролируемых изделий и фиксируют изделие, начиная с которого структура изделия, а значит, и технология его изготовления изменилась на недопустимую величину. Технический результат - повышение достоверности результатов оценки технического и эксплуатационного состояния сложных конструкций и их элементов из ПКМ. 7 ил., 1 табл.

Изобретение относится к области измерительной техники, в частности к тепловому неразрушающему контролю объектов, и может быть использовано для технической диагностики качества неоднородных конструкций, например зданий и сооружений, по сопротивлению теплопроводности в условиях нестационарных внешних воздействий. Способ включает измерение температуры на наружной и внутренней поверхностях многослойной конструкции и теплового потока на внутренней ее стороне, накопление по каждому измерению значений температуры на противоположных сторонах многослойной конструкции и значения теплового потока на внутренней и наружной сторонах. В процессе накопления значений температуры и теплового потока измеряют за каждый период изменения наибольшее и наименьшее значения температуры и тепловых потоков на внутренней и наружной поверхностях многослойной конструкции, измеряют среднюю величину наибольшего и наименьшего значений температуры и теплового потока за период измерения, измеряют диапазон изменения наибольших и наименьших значений температуры и теплового потока на наружных и внутренних поверхностях многослойной конструкции с вероятностью 0,95. Ограничивают максимальные и минимальные значения измеряемых температуры и тепловых потоков и определяют сопротивление теплопередаче R многослойной конструкции в точке контролируемого участка поверхности исследуемого объекта с координатами Х0, Y0. Технический результат - повышение достоверности и производительности определения качества исследуемого объекта в нестационарных условиях теплопередачи за счет исключения влияния на результаты внешних мешающих факторов. 1 з.п. ф-лы, 5 ил.

Группа изобретений относится к измерительной технике и может быть использована для оценки надежности сложных пространственных конструкций из композитных материалов. Способ и устройство, реализующее данный способ, включает размещение оптических волокон с брэгговскими решетками послойно в слоях конструкции из полимерных композиционных материалов в процессе изготовления. Координаты решеток разных оптических волокон устанавливают друг над другом с погрешностью не более половины длины решетки. Измеряют температуру и деформацию, определяют величины обусловленных деформацией и температурой напряжений на решетках путем решения систем уравнений, описывающих соответствующие математические модели. В процессе нагружения изделия сравнивают величины деформации и температуру с максимально допустимой величиной деформации и температуры. Измеряют зависимость величины напряжения и температуры на решетках от глубины их залегания в конструкции. Измеряют разность измеренных и эталонных зависимостей и на основании сравнения формируют заключение о надежности функционирования конструкции под действием силовых нагрузок и предельном ресурсе эксплуатации. По результатам измерения температуры вдоль оптических волокон локализуют места расположения концентраторов напряжений. Технический результат – повышение достоверности обнаружения локальных участков пониженной прочности, повышение достоверности результатов оценки технического и эксплуатационного состояния сложных конструкций и их элементов из композиционных материалов. 2 н. и 4 з.п. ф-лы, 9 ил.

Изобретение относится к электрометаллургии и решает задачу управления режимом работы печного агрегата, содержащего два источника нагрева: сопротивлением и дугой постоянного тока. Технический результат - улучшение качества регулирования при нагреве материала в печи. Система автоматического управления электрическим режимом плавильного агрегата, имеющего источник дугового нагрева и нагреватели сопротивления, содержит контур управления источником дугового нагрева, включающий источник электропитания, выполненный с возможностью подачи напряжения на сводовый и подовый электроды через регулятор тока и токопроводы. Система также содержит контур управления нагревателями сопротивления, включающий тиристорный регулятор напряжения, подключенный к нагревателям сопротивления, устройство видеофиксации изображения поверхности расплавляемого металла с датчиком контроля его агрегатного состояния. Система включает микропроцессорный блок, выполненный с возможностью отключения контура управления источником дугового нагрева в момент полного расплавления шихты по сигналу с упомянутого датчика контроля и подключения контура управления нагревателями сопротивления. 1 ил.

Изобретение относится к области измерительной техники и может быть использовано для контроля качества композитных броневых преград. Способ включает установку броневой преграды перед пластиной из пластичного материала, направление с заданной скоростью поражающего элемента на броневую преграду. Дополнительно регистрируют температурное поле поверхности композитной броневой преграды, имеющей минимальные температурные аномалии, которое принимается за аномальное, определяют пространственное разрешение для регистрации температурного поля, исходя из обнаружения минимальных по размеру температурных аномалий с пространственным периодом, определяемым размерами минимальной температурной аномалии. После воздействия на композитную броневую преграду поражающим элементом с заданной скоростью одновременно измеряют температурное поле в области соприкосновения поражающего элемента с композитной броневой преградой, начиная с момента соприкосновения поражающего элемента с композитной броневой преградой и с противоположной стороны, по отношению к стороне соприкосновения с поражающим элементом, на основании анализа температурного поля, зарегистрированного с двух поверхностей, определяют техническое состояние композитной броневой преграды по вектору характеристик броневой преграды и ее энергию поглощения минимизацией функционала по вектору характеристик контролируемой броневой пластины путем решения системы уравнений и на основании анализа температурного поля определяют энергию поглощения композитной броневой преградой. Раскрыто устройство стендовых испытаний композитных броневых преград. Технический результат - повышение информативности и достоверности результатов испытаний. 2 н. и 3 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к области измерительной техники и может быть использовано для оценки надежности сложных конструкций из композитных материалов на основе результатов теплового контроля. Способ включает тепловое возбуждение материала внешним источником, регистрацию температурного поля контролируемого изделия и сравнение зарегистрированного температурного поля с пороговым значением температуры и выделение дефектных участков. Согласно изобретению в материал контролируемого изделия вводят электропроводную высокосмачиваемую жидкость таким образом, чтобы она проникла в микротрещины и поры материала, и воздействуют на контролируемое изделие электромагнитным полем. Электромагнитное поле взаимодействует с электропроводной высокосмачиваемой жидкостью в контролируемом изделии и нагревает ее. Регистрируют возникающее при этом температурное поле поверхности контролируемого объекта. Технический результат - повышение достоверности обнаружения локальных участков пониженной прочности, повышение достоверности результатов оценки технического и эксплуатационного состояния сложных конструкций и их элементов из композитных материалов, повышение информативности и производительности контроля. 1 табл., 2 з.п. ф-лы, 4 ил.

Группа изобретений относится к измерительной технике и может быть использована для оценки надежности и качества многослойных конструкций из полимерных композиционных материалов на основе контроля толщины слоев. Способ магнитоиндукционного измерения толщины диэлектрического покрытия включает возбуждение магнитного поля датчика, состоящего из соосно установленных измерительного и компенсационного магнитных трансформаторов, установку датчика на поверхность диэлектрического покрытия таким образом, чтобы измерительный трансформатор датчика генерировал магнитное поле относительно поверхности контролируемого диэлектрического покрытия, регистрацию и усиление изменения разностного сигнала измерительного и компенсационного магнитных трансформаторов за счет искажения магнитного поля и определение толщины диэлектрического покрытия. Ориентируют датчик таким образом, чтобы его измерительный трансформатор генерировал магнитное поле параллельно поверхности контролируемого диэлектрического покрытия, измеряют отношение сигналов на входе и выходе компенсационного магнитного трансформатора, на основании величины отношения сигналов осуществляют компенсацию погрешности измеряемой толщины диэлектрического покрытия. Способ осуществляют с помощью устройства магнитно-индукционного измерения толщины диэлектрического покрытия. Технический результат заключается в повышении точности измерения толщины слоев полимерных композитных материалов (ПКМ), расширении области применения и повышении достоверности результатов оценки технического и эксплуатационного состояния сложных конструкций и их элементов из ПКМ. 2 н.п. ф-лы, 5 ил., 2 табл.

Изобретение относится к области измерительной техники и может быть использовано для контроля качества композитных броневых преград. Заявлено устройство теплового контроля качества композитных броневых преград на основе анализа энергии поглощения поражающего элемента, включающее устройство для стрельбы, расположенное между подложкой и устройством для стрельбы на траектории полета поражающего элемента устройство для измерения скорости полета поражающего элемента на выходе устройства для стрельбы, подложку из пластичного материала. Устройство дополнительно снабжено тепловизионной системой, компьютерной системой и устройством регистрации начала полета поражающего элемента. Тепловизионная система расположена таким образом, чтобы поле обзора ее оптической части охватывало место соприкосновения поражающего элемента и композитной броневой преграды. Вход устройства регистрации начала полета поражающего элемента подключен к выходу устройства измерения скорости поражающего элемента на выходе устройства для стрельбы. Выход устройства регистрации начала полета поражающего элемента подключен к входу тепловизионной системы, а выход тепловизионной системы подключен к входу компьютерной системы. Технический результат - повышение информативности и достоверности результатов испытаний. 9 ил.

Группа изобретений относится к области измерительной техники и может быть использована для оценки надежности и качества многослойных конструкций из полимерных композиционных материалов на основе контроля толщины слоев. Сущность: способ характеризуется тем, что предварительно измеряют градуировочную характеристику, в зоне измерения толщины композитного материала устанавливают металлические закладные элементы малой площади, устанавливают вихретоковый преобразователь на поверхность контролируемого композитного материала в центре зоны измерения толщины, измеряют сигнал, пропорциональный периоду измерительного автогенератора и толщине измеряемого композитного материала, дополнительно генерируют сигналы опорным автогенератором, по величине пропорциональные периоду. Определяют сигнал, пропорциональный разности периода колебаний измерительного и опорного автогенератора. Линеаризируют полученный сигнал. Перед каждым измерением толщины вихретоковый преобразователь устанавливают вне зоны контроля и измеряют сигнал, пропорциональный разности периодов сигналов опорного и измерительного автогенераторов, и уточняют линеаризированный сигнал, регистрируют значение толщины на регистрирующем устройстве. Для осуществления способа используется устройство, включающее вихретоковый преобразователь с катушкой индуктивности, измерительный автогенератор, регистрирующее устройство, опорный автогенератор со второй катушкой индуктивности, измеритель периода колебаний измерительного автогенератора, измеритель периода колебаний опорного автогенератора, вычитатель/сумматор измерителей периода колебаний, блок временных поправок, блок управления блоком временных поправок и линеаризатор передаточной функции. Технический результат: повышение точности измерения и достоверности результатов оценки технического и эксплуатационного состояния конструкций и их элементов. 2 н.п. ф-лы, 4 ил.

Использование: для оценки надежности конструкции из электропроводных полимерных композиционных материалов на основе контроля распределения электрических потенциалов по поверхности. Сущность изобретения заключается в том, что способ контроля объектов из электропроводных полимерных композиционных включает: установку и фиксацию питающих электродов с противоположных или с одной стороны контролируемого объекта, установку двух измерительных электродов на одной или двух поверхностях контролируемого объекта, одновременное измерение разности потенциалов между измерительными электродами и силы тока между питающими электродами, определение кажущегося электрического сопротивления между измерительными электродами путем деления разности потенциалов на величину тока между питающими электродами, определение дефектов в материале по величине кажущегося электрического сопротивления, жестко фиксируют между собой питающие и измерительные электроды, перемещают комплекс зафиксированных между собой питающих и измерительных электродов по поверхности контролируемого объекта, измерение разности потенциалов между измерительными электродами и силы тока между питающими электродами повторяют многократно для определения дефектов в материале всего объекта. Технический результат: обеспечение возможности повышения достоверности определения состояния объектов из электропроводных полимерных композиционных материалов. 2 з.п. ф-лы, 11 ил.

Изобретение относится к области измерительной техники и может быть использовано для автоматического определения концентрации металла в руде. Согласно заявленному способу перед проведением контроля содержания металла в руде по конвейеру пропускают руду без примесей металла. Нагревают площадным источником теплового излучения, ширина которого превышает ширину конвейера. Через время τзад после окончания нагрева измеряют среднее значение температуры по нагретой поверхности руды без содержания металла Т1ср. На основании проведенных измерений формируют градуировочную кривую. Далее на конвейер непрерывно подают руду, содержащую металл, и нагревают. Через время τзад измеряют на каждом кадре i среднее значение температуры Tcpi. Определяют величину Tcpi-T1ср на основании градуировочной кривой. Используя величину (Tcpi-T1ср), определяют процентное содержание металла в руде. Также предложено устройство для реализации указанного способа. Технический результат - повышение достоверности определения содержания металла в руде. 2 н. и 4 з.п. ф-лы, 7 ил., 1 табл.

Изобретение относится к области измерительной техники и может быть использовано для оценки надежности сложных пространственных конструкций из полимерных композиционных материалов (ПКМ) на основе результатов теплового контроля при нагружении изделий статической или динамической нагрузкой. Способ включает регистрацию пространственной термограммы объекта контроля и ее обработку для обнаружения дефектов. Одновременно с регистрацией пространственной термограммы осуществляют регистрацию видеоизображения объекта контроля для уточнения его местоположения. Устройства регистрации термограмм и регистрации видеоизображения располагают перед объектом контроля с возможностью совмещения полей обзора объекта контроля. Видеоизображение объекта контроля регистрируют в тех же пространственных координатах, что и термограмму. Строят матрицу совмещенной термограммы и осуществляют обработку ее элементов для получения информации о состоянии объекта. Система включает устройство регистрации термограмм, устройство регистрации видеоизображения, блок визуализации и обработки термограмм, коммутатор, счетчик сигналов, инвертор сигналов, первый и второй сумматоры, пороговое устройство и блок формирования матрицы сигналов. Технический результат заключается в повышении достоверности обнаружения локальных участков пониженной прочности, повышении достоверности результатов оценки технического и эксплуатационного состояния сложных конструкций и их элементов из ПКМ. 2 н. и 5 з.п. ф-лы, 5 ил.

Группа изобретений относится к измерительной технике. Способ включает силовое воздействие на поверхность объекта контроля, регистрацию массива электрических сигналов входной информации установленными на объекте контроля информационными датчиками, при этом сигналы информационных датчиков обусловлены изменениями силового воздействия на поверхность объекта контроля. Используют устройство, включающее информационные датчики, установленные на объекте контроля и воспринимающие изменения параметров объекта контроля, электронные фильтры для повышения отношения сигнал/шум, связанные с выходами датчиков и подключенные к входам электронной аналоговой схемы, реализующей нейросетевую модель надежности эксплуатации объекта контроля, при этом к другой группе входов электронной аналоговой схемы подключен блок подачи сигнала на переобучение модели износами, а к ее выходу подключены последовательно соединенные блок аппроксимации временных зависимостей массивов электрических сигналов, блок формирования временного ряда предсказаний надежности эксплуатации объекта контроля, блок экстраполяции величины массива электрических сигналов на выходе электронной аналоговой схемы до предельного значения и определения остаточного ресурса, к входу которого подключен блок задания модели экстраполяции. Технический результат заключается в повышении достоверности результатов прогнозирования, повышении универсальности метода, расширении области использования. 2 н. и 1 з.п. ф-лы, 3 ил.

Изобретение относится к области измерительной техники. Способ включает взаимное перемещение передающего и приемного ультразвуковых преобразователей относительно контролируемого изделия, пропускание ультразвуковых волн через изделие и обнаружение внутренних дефектов в материале путем анализа искажений ультразвукового сигнала, прошедшего через материал изделия, одновременно посредством сканирующей системы осуществляют перемещение изделия относительно ультразвуковых преобразователей. Перед проведением ультразвукового контроля измеряют размеры минимального для данного изделия дефекта типа нарушения сплошности материала следующим образом: исследуемое изделие в области предположительного расположения дефектной области разрезают на равные образцы, на торцах образцов измеряют раскрытие δ выходящих на торцы дефектов с шагом Δd, заведомо меньшим, чем размеры минимального дефекта, производят послойную препарацию образцов, после препарации измеряют площадь участков дефектов, принадлежащих соответствующему раскрытию δ, рассчитывают и строят экспериментальную зависимость плотности площади дефектов от величины раскрытия. На основании построенных экспериментальных зависимостей с учетом коридора доверительного интервала, рассчитанного с заданной вероятностью с учетом неравноточности проводимых измерений, определяют площадь или характерный размер dmin и раскрытие δmin минимального дефекта для изделия. Далее определяют шаг сканирования ΔYmin поверхности изделия, при котором обеспечивается необходимая погрешность измерения минимального дефекта. Перемещение изделия относительно преобразователей проводят с этим шагом. Технический результат состоит в повышении достоверности результатов ультразвукового контроля изделий из полимерных композиционных материалов формы тел вращения. 4 з.п. ф-лы, 5 ил., 3 фото.

Группа изобретений относится к измерительной технике и может быть использована при решении задач энергетического аудита. Заявлен способ и устройство интеллектуального энергосбережения, согласно которым измеряют температуру теплоносителя на входе и выходе энергопотребляющего объекта, измеряют массу теплоносителя за определенный промежуток времени, определяют количество энергии, потребляемой объектом. Последовательно измеряют значения температуры на противоположных сторонах конструкции, тепловой поток на внутренней стороне конструкции и наружной стороне конструкции на противоположной стороне. Определяют сопротивление теплопередачи многослойной конструкции в точке контролируемого участка поверхности исследуемого объекта для каждого интервала измерения. Проводят тепловизионное обследование путем измерения температурного поля поверхности с пространственным периодом, определяемым размерами минимального дефекта конструкции. Определяют приведенное сопротивление теплопередаче по всей поверхности исследуемого объекта в произвольных координатах. Определяют сверхнормативные потери тепла. Определяют энергоэффективность по отношению к сверхнормативным потерям тепла и осуществляют формирование управляющего воздействия для интеллектуализации энергосбережения. Технический результат: повышение эффективности энергосбережения. 2 н. и 7 з.п. ф-лы, 15 ил, 1 табл.

Изобретение относится к области измерительной техники и может быть использовано для технической диагностики неоднородных конструкций. Устройство для определения сопротивления теплопередачи многослойной конструкции включает датчики температуры и теплового потока и тепловизионное устройство. Согласно изобретению включены счетчик времени измерения, блоки вычисления сопротивления теплопередачи, блок вычисления изменения сопротивления теплопередачи, блок сравнения изменения сопротивления теплопередачи и максимального изменения сопротивления теплопередачи, блок присвоения сопротивления теплопередачи, счетчик периодов времени и блок вычисления приведенного сопротивления теплопередачи. Технический результат - повышение точности результатов исследования. 1 з.п. ф-лы, 14 ил., 2 табл.

Изобретение относится к области измерительной техники и может быть использовано для оценки надежностей конструкций из полимерных композиционных материалов. Способ включает силовое воздействие на поверхность конструкции и регистрацию обусловленных им изменений. До приложения нагрузок измеряют начальную температуру контролируемой конструкции. В процессе проведения контроля измеряют температуру воздуха вблизи наружной поверхности контролируемой конструкции. Силовое воздействие на поверхность конструкции осуществляют путем воздействия на исследуемую конструкцию возрастающей статической нагрузкой Р. В процессе приложения динамической нагрузки непрерывно осуществляют регистрацию температурного поля Т. Анализ температурного поля с заданным периодом изменения нагрузки проводят непрерывно. По результатам анализа формируют информационный сигнал для обнаружения участков пониженной прочности или обнаружения дефектов. По анализу температурного поля определяют наличие внутренних остаточных напряжений исследуемой конструкции и наличие в ней внутренних дефектов. Представлено устройство для осуществления способа. Технический результат: повышение достоверности результатов оценки технического и эксплуатационного состояния конструкций и их элементов из ПКМ. 2 н. и 4 з.п. ф-лы, 1 табл., 17 ил.

Изобретение относится к области измерительной техники и может быть использовано для диагностики технического состояния строительных сооружений

Изобретение относится к области медицины и может быть использовано для диагностики, контроля лечения и прогноза сосудистой патологии

Изобретение относится к измерительной технике

 


Наверх