Патенты автора Матлин Михаил Маркович (RU)

Изобретение относится к области определения предела текучести при кручении без разрушения материала деталей, работающих в условиях нагружения крутящим моментом. Сущность: осуществляют нагружение поверхности испытуемого материала посредством индентора под углом скрещивания 90° оси цилиндрического индентора к оси цилиндрической детали нагрузкой, величина которой соответствует диапазону измерения твердости, измерение глубины полученного остаточного отпечатка, определение критической нагрузки, и расчет предела текучести испытуемого материала цилиндрической детали при кручении по зависимости ,где F – нагрузка на цилиндрический индентор (Н); Fкр – критическая нагрузка, (Н); h – глубина остаточного отпечатка, (мм); Rпр – приведенный радиус кривизны в контакте; с – коэффициент пластичности при кручении. Технический результат: упрощение способа определения предела текучести материала цилиндрической детали при кручении и повышение его точности. 1 табл.

Изобретение относится к области определения прочностных свойств металлов и может быть использовано для определения предела выносливости при кручении без разрушения материала деталей, работающих в условиях нагружения переменным во времени крутящим моментом. Сущность: осуществляют измерение радиусов кривизны поверхности испытуемого материала цилиндрической детали и цилиндрического индентора, определяют по ним приведенный радиус кривизны Rпр. Нагружают поверхность испытуемого материала цилиндрической детали посредством цилиндрического индентора под углом скрещивания 90° его оси к оси цилиндрической детали двумя различными нагрузками F1 и F2, соответствующими измерению твердости. Измеряют глубины h1 и h2 двух полученных остаточных отпечатков от точки начального касания цилиндрического индентора с цилиндрической деталью. Рассчитывают предел выносливости при кручении по зависимости с учетом коэффициентов усталостной прочности при кручении. Технический результат: упрощение способа определения предела выносливости материала цилиндрической детали при кручении и повышение его точности. 1 табл.

Изобретение относится к области технологии строительства и может быть использовано для определения количества цемента в застывшей цементно-песчаной смеси. Способ определения количества цемента в изделии из цементно-песчаной смеси заключается в нагружении поверхности изделия посредством сферического индентора двумя различными нагрузками на глубины остаточных отпечатков, составляющих 2-10% от диаметра индентора, измерении глубин остаточных отпечатков и расчете количества цемента по следующей зависимости: ,где Ц – количество цемента в изделии из цементно-песчаной смеси (%), D – диаметр сферического индентора (мм), a и b – коэффициенты, зависящие от свойств цемента и песка, а g – коэффициент пластической контактной жесткости изделия из цементно-песчаной смеси (Н/мм), определяемый по формуле , где F1 и F2 – нагрузки на индентор (Н), h1 и h2 – глубины остаточных отпечатков (мм). Техническим результатом является высокоточное определение содержания цемента в изделиях из цементно-песчаных смесей, возможность контроля качества готовых строительных конструкций и изделий при их создании и эксплуатации. 1 табл.

Изобретение относится к области определения предела текучести при изгибе без разрушения материала деталей, работающих в условиях нагружения изгибающим моментом. Сущность: осуществляют нагружение поверхности испытуемого материала посредством индентора нагрузкой, величина которой соответствует диапазону измерения твердости, измерение параметров отпечатка и расчет предела текучести испытуемого материала. Осуществляют не менее шести последовательных нагружений испытуемого материала в одну фиксированную точку поверхности детали, не менее половины которых выполняют за пределами глубин, составляющих 8-10% диаметра индентора. Измеряют глубины полученных остаточных отпечатков после каждого нагружения. Строят график зависимости глубины остаточного отпечатка от нагрузки, по которому определяют максимальную нагрузку, предшествующую началу отклонения графика от линейной зависимости. Предел текучести материала детали при изгибе рассчитывают по зависимости, учитывающей максимальную нагрузку, предшествующую началу отклонения графика зависимости глубины остаточного отпечатка от нагрузки от линейной зависимости, глубину остаточного отпечатка, соответствующую максимальной нагрузке, диаметр сферического индентора и коэффициенты пластичности при изгибе, зависящие от химического состава испытуемого материала. Технический результат: упрощение способа определения предела текучести материала цилиндрической детали при изгибе и повышение его точности. 1 ил., 1 табл.

Изобретение относится к области определения прочностных свойств металлов и может быть использовано для определения предела текучести при смятии без разрушения материала деталей, работающих в условиях нагружения сминающими нагрузками. Сущность: осуществляют нагружение поверхности испытуемого материала посредством сферического индентора нагрузкой, величина которой соответствует диапазону измерения твердости, измеряют параметры отпечатка и рассчитывают предел текучести испытуемого материала. Нагружение поверхности испытуемого материала посредством сферического индентора осуществляют двумя различными нагрузками и измеряют глубины двух полученных остаточных отпечатков, а предел текучести испытуемого материала при смятии рассчитывают по зависимости, учитывающей нагрузки на сферический индентор, глубины остаточных отпечатков, диаметр сферического индентора и коэффициент пластичности при смятии, зависящий от химического состава испытуемого материала. Технический результат: упрощение способа определения предела текучести материала при смятии и повышение его точности. 1 табл.

Изобретение относится к области определения прочностных свойств металлов и может быть использовано для определения предела прочности при срезе без разрушения материала деталей. Сущность: осуществляют нагружение испытуемого материала посредством сферического индентора нагрузкой, находящейся в диапазоне, соответствующем измерению твердости, измерение диаметра индентора, диаметра остаточного отпечатка на поверхности испытуемого материала, нагрузки на индентор и расчет предела прочности материала при срезе по зависимости, учитывающей εр - предельную равномерную деформацию при статическом растяжении образца из испытуемого материала, F – нагрузку на сферический индентор, d – диаметр отпечатка на поверхности испытуемого материала, D – диаметр сферического индентора, V и W - коэффициенты предела прочности при срезе, зависящие от химического состава испытуемого материала. Технический результат: упрощение способа определения предела прочности материала при срезе и повышение его точности. 1 табл.

Изобретение относится к области определения пластичных свойств металлов и может быть использовано для определения предельного равномерного сужения без разрушения материала деталей. Сущность: испытуемый материал нагружают посредством сферического индентора нагрузкой, находящейся в диапазоне, соответствующем измерению твердости, измеряют глубину отпечатка на поверхности испытуемого материала и рассчитывают предельное равномерное сужение по зависимости, учитывающей нагрузку на сферический индентор, диаметр сферического индентора, глубину отпечатка на поверхности испытуемого материала, число π и универсальную постоянную для металлов. Технический результат: упрощение способа определения предельного равномерного сужения и повышение его точности. 1 табл.

Изобретение относится к области определения пластичных свойств конструкционных материалов и может быть использовано для определения относительного сужения после разрыва. Сущность: испытуемый материал нагружают посредством сферического индентора нагрузкой, находящейся в диапазоне, соответствующем измерению твердости, измеряют размеры отпечатка и определяют относительное сужение после разрыва, при этом измеряют пластическую твердость НД испытуемого материала, определяют модуль пластичности М испытуемого материала с последующим определением относительного сужения после разрыва с учетом истинного сопротивления разрыву Sk испытуемого материала. Технический результат: возможность повысить точность и оперативно без разрушения производить определение относительного сужения после разрыва. 2 табл.

Изобретение относится к области определения упругих свойств конструкционных материалов и может быть использовано для определения коэффициента Пуассона. Сущность: испытуемый материал подвергают индентированию и определяют коэффициент Пуассона, при этом используют упругий индентор в виде сферы, определяют упругие константы материала сферического индентора, производят однократное индентирование нагрузкой, находящейся в диапазоне, соответствующем измерению твердости, измеряют в процессе снятия нагрузки суммарную величину упругого восстановления упругопластического отпечатка на поверхности испытуемого материала и упругодеформированной поверхности сферического индентора в центре контакта, измеряют диаметр остаточного отпечатка на поверхности испытуемого материала, а величину коэффициента Пуассона определяют по предложенной формуле. Технический результат: создание нового способа определения коэффициента Пуассона без разрушения материала деталей. 3 табл.

Изобретение относится к способу интуитивного управления летательным аппаратом. Способ заключается в том, что управляют креном, тангажом и курсом посредством поворота по часовой стрелке или против и отклонения вверх-вниз, влево-вправо рукоятки управления, установленной на телескопической стойке и расположенной между ног пилота, при этом все три оси вращения рукоятки управления проходят через геометрический центр лучезапястного сустава кисти руки пилота, а геометрическая ось рукоятки совпадает с продольной осью летательного аппарата. Обеспечивается ускорение обучения пилотов, повышение точности и надежности управления, повышение безопасности полетов. 2 ил.

Изобретение относится к области определения прочностных свойств конструкционных материалов и может быть использовано для определения предела выносливости при изгибе. Сущность: измеряют радиусы кривизны поверхности испытуемого материала в сечениях двумя плоскостями главных кривизн и радиус сферического индентора, по которым определяют приведенный радиус кривизны Rпр. Используя нагрузку в диапазоне, соответствующем измерению твердости, внедряют сферический индентор в испытуемый материал, определяют предельную равномерную деформацию εр при статическом растяжении образца из испытуемого материала, при этом определяют коэффициент Пуассона испытуемого материала. Измеряют полуоси полученного остаточного отпечатка и определяют интенсивность напряжений в центре остаточного отпечатка, по которой определяют предел выносливости испытуемого материала при изгибе. Технический результат: создание нового способа определения предела выносливости материала при изгибе без разрушения материала деталей, позволяющего повысить точность и оперативно без разрушения производить определение предела выносливости материала при изгибе. 4 табл.

Изобретение относится к области определения прочностных свойств конструкционных материалов и может быть использовано для определения истинного сопротивления разрыву. Сущность: испытуемый материал нагружают посредством индентора диаметром D нагрузкой Р, находящейся в диапазоне, соответствующем измерению твердости, измеряют размеры отпечатка и определяют истинное сопротивление разрыву, при этом используют индентор сферической формы. Измеряют остаточную h и упругую αу части полного сближения сферического индентора с поверхностью испытуемого материала, по которым определяют радиус кривизны поверхности отпечатка сферического индентора под нагрузкой, с учетом которого определяют величину истинного давления q под нагрузкой на поверхности отпечатка, по которому определяют истинное сопротивление разрыву. Технический результат: возможность определения истинного сопротивления разрыву без разрушения материала деталей. 3 табл.

Изобретение относится к испытательной технике и может быть использовано для фиксации эпюры давления в соединениях с натягом, собранных тепловым способом. Заявленное устройство для фиксации эпюры давления содержит чувствительный элемент в виде шариков, расположенных в один слой между поверхностями, при этом устройство содержит втулку, снабженную пружиной сжатия, установленной с зазором на штоке, диаметр которого на участке сопряжения с внутренней контактной поверхностью контролируемой охватывающей детали меньше на удвоенный диаметр шарика, а его длина равна длине внутренней контактной поверхности контролируемой охватывающей детали, причем втулка и шток образуют кольцевую полость, заполненную шариками по всему объему, количество которых по окружности внутренней контактной поверхности контролируемой охватывающей детали определяют по предложенному соотношению. Техническим результатом предложенного устройства является создание нового устройства для фиксации эпюры давления в соединении с натягом, которое обеспечивает повышение точности фиксации эпюры давления в соединениях с натягом, собранных тепловым способом. 3 ил.

Изобретение относится к испытательной технике, а именно к способам определения предела выносливости материала. Сущность: измеряют радиусы кривизны поверхности испытуемого материала в сечениях двумя плоскостями главных кривизн и радиус сферического индентора, по которым определяют приведенный радиус кривизны. Используя две различные нагрузки в диапазоне, соответствующем измерению твердости, внедряют сферический индентор в испытуемый материал и измеряют глубины двух полученных остаточных отпечатков. Определяют контактную жесткость испытуемого материала. Определяют предельную равномерную деформацию при статическом растяжении образца из испытуемого материала, по которой определяют предел выносливости испытуемого материала при растяжении-сжатии по зависимости. Технический результат: создание нового способа определения предела выносливости материала при растяжении-сжатии без разрушения материала деталей. 4 табл., 1 пр.

Изобретение относится к измерительной технике для определения контактной жесткости. Сущность: поверхности контактирующих деталей с определенными упругими константами материалов прижимают к друг другу с заданной силой F, нормальной к плоскости стыка, определяют остаточную h и упругую αy части полного сближения в контакте, по их сумме определяют величину полного сближения α в контакте, с последующим определением коэффициента j нормальной жесткости упругопластического контакта деталей двоякой кривизны. Предварительно измеряют пластическую твердость НД1 и НД2 каждой детали в зоне контакта, по которым определяют приведенную пластическую твердость НДпр контактирующих деталей, затем определяют суммарную остаточную часть сближения hΣ в центре контакта деталей, с учетом которой определяют суммарное упругое сближение αy,Σ в центре контакта деталей, с последующим определением суммарного полного сближения αΣ и коэффициента j нормальной жесткости упругопластического контакта деталей двоякой кривизны. Технический результат: создание нового универсального способа определения коэффициента нормальной жесткости первоначально точечного упругопластического контакта деталей, который справедлив при произвольном сочетании твердостей материалов контактирующих деталей. 3 табл.

Изобретение относится к машиностроению, в частности к способам поверхностного пластического деформирования деталей дробью. Осуществляют обработку стальной пластины дробью с получением интенсивности пластической деформации в центре отпечатков дроби, равной предельной равномерной деформации при растяжении материала стальной пластины, εp, и с толщиной упрочненного слоя на поверхности стальной пластины, hs. При этом обработку осуществляют дробью, диаметр D которой и начальную скорость удара которой по стальной пластине V определяют по зависимостям: игде D - диаметр дроби, мм, V - начальная скорость удара дроби по стальной пластине, м/с, НД - исходная статическая пластическая твердость материала стальной пластины, Па, hs - толщина упрочненного слоя на поверхности стальной пластины, мм, k - коэффициент восстановления скорости дроби при ее ударе, равный 0,909, εp - предельная равномерная деформация при растяжении материала стальной пластины, η - динамический коэффициент пластической твердости стальной пластины, равный 1,5, ρ - плотность материала дроби, кг/м3. В результате повышается долговечность упрочненной пластины. 1 табл., 1 пр.

Изобретение относится к машиностроению и может быть использовано для обеспечения передачи вращения в одном направлении

Изобретение относится к машиностроению и может быть использовано, в частности, для определения пластической твердости материалов

Изобретение относится к машиностроению и может быть использовано, в частности, для определения базовой динамической грузоподъемности (долговечности) подшипниковых узлов машин с шариковыми подшипниками качения

Изобретение относится к машиностроению и может быть использовано, в частности, для определения базовой динамической грузоподъемности (долговечности) подшипниковых узлов машин с роликовыми подшипниками качения

Изобретение относится к машиностроению, в частности к способам определения свойств материала деталей при упрочнении пластическим деформированием

Изобретение относится к машиностроению и может быть использовано, в частности, для определения базовой статической грузоподъемности (допустимой статической нагрузки) подшипниковых узлов машин с подшипниками качения

Изобретение относится к машиностроению и может быть использовано, в частности, для определения базовой статической грузоподъемности (допустимой статической нагрузки) подшипниковых узлов машин с подшипниками качения

Изобретение относится к методам испытания материалов, в частности к способам определения их твердости

 


Наверх