Патенты автора Воротынцев Владимир Михайлович (RU)

Изобретение относится к области неорганической химии, а именно к разделению компонентов природного газа газогидратной кристаллизацией, и может быть использовано для удаления диоксида углерода из природного газа. Способ удаления диоксида углерода из природного газа включает образование газовых гидратов диоксида углерода при давлении от 2.0 до 8.0 МПа и температуре от 273 до 278 K и последующее их разложение с образованием концентрата диоксида углерода. В газогидратный кристаллизатор подают поток природного газа с находящимся в нем 6-10-кратным мольным избытком воды относительно мольной концентрации гидратообразующих газов в природном газе. Не перешедшие в газогидратную фазу компоненты природного газа выводят из газогидратного кристаллизатора. Образовавшиеся газовые гидраты отбирают шнеком в модуль сепарации для разрушения на воду и концентрат диоксида углерода при повышении температуры от 293 до 323 K. Оставшиеся компоненты природного газа выводят на переработку. Технический результат от использования изобретения заключается в повышении степени удаления диоксида углерода из природного газа. 1 ил., 1 табл., 2 пр.

Изобретение относится к области неорганической химии, а именно к разделению компонентов природного газа методами газогидратной кристаллизации и мембранного газоразделения, объединенных в едином массообменном аппарате, и может быть использовано для получения концентрата ксенона. Способ включает образование газовых гидратов ксенона при давлении от 2.4 до 8.0 МПа и температуре от 273 до 283 K и последующее их разложение с образованием концентрата ксенона. Причем в мембранно-газогидратном кристаллизаторе создают области низкого давления от 0.01 до 0.1 МПа и высокого давления от 2.4 до 8.0 МПа, разделенные непористой полимерной газоразделительной мембраной. Далее поток природного газа подают в область высокого давления с находящимся в ней 6-10-кратным избытком воды относительно объемной концентрации гидратообразующих газов в природном газе при указанных условиях для образования газовых гидратов ксенона. Затем компоненты природного газа с высокой газовой проницаемостью после прохождения через непористую полимерную газоразделительную мембрану в области низкого давления выводят из мембранно-газогидратного кристаллизатора. При появлении ксенона в выходящих газах прекращают подачу природного газа и образовавшиеся газовые гидраты отбирают шнеком в модуль сепарации для разрушения на воду и концентрат ксенона при повышении температуры от 293 до 323 K, оставшиеся компоненты природного газа выводят из области высокого давления на переработку. Технический результат заявленного изобретения заключается в повышении степени концентрирования ксенона. 1 ил., 1 табл., 2 пр.
Изобретение относится к способам очистки веществ и касается разработки способа глубокой очистки хладагента R717 (аммиака), используемого в двухфазных системах терморегулирования (СТР) крупногабаритных конструкций космических летательных аппаратов. Cпособ глубокой очистки хладагента R717 включает ректификацию технического аммиака в периодической насадочной колонне со средним питающим резервуаром. Процесс ведется в режиме параллельного отбора вышекипящих и нижекипящих относительно хладагента R717 примесных фракций из нижней и верхней отборных точек вплоть до достижения требуемой чистоты хладагента R717 в среднем питающем резервуаре, при этом процесс проводят при абсолютном давлении в колонне в диапазоне от 10 до 40 бар и температуре от 25 до 60°С, причем нагрузка колонны по пару поддерживается не менее 70% от предельной при давлении и температуре проведения процесса. Рабочее давление в колонне поддерживают в диапазоне 30-40 бар при удалении примесей с высоким коэффициентом разделения жидкость-пар и в диапазоне 10-20 бар при удалении примесей с малым коэффициентом разделения жидкость-пар. Технический результат: увеличение производительности и снижение энергоемкости процесса очистки при одновременном увеличении разделительного эффекта в колонне, что способствует увеличению степени выделения продукта и глубины его очистки. 3 пр.

Изобретение относится к области получения кремнийсодержащих материалов. Способ получения моносилана осуществляют диспропорционированием трихлорсилана. Способ включает контактирование трихлорсилана и смеси хлорсиланов с катализатором в ректификационной колонне. Производят отгонку из смеси тетрахлорида кремния и выделение полученных хлорсиланов с последующим возвратом смеси в ректификационную колонну. Выделение моносилана проводят методом парциальной конденсации. Моносилан с примесями хлорсиланов и частиц катализатора разделяют и очищают методом мембранного газоразделения. Для отделения хлорсиланов разделение ведут на высокопроницаемой по хлорсиланам мембране в режиме противотока, а для очистки от гетерогенных наночастиц катализатора разделение ведут на высокопроницаемой по моносилану мембране в режиме прямотока. Технический результат заключается в снижении материало- и энергоемкости процесса с получением более чистого моносилана. 1 ил., 3 пр.

Изобретение относится к производству высокочистых халькогенидных стекол для изготовления оптических элементов, световодов и широкозонных полупроводниковых устройств. Изобретение позволяет исключить загрязнение получаемого халькогенидного стекла за счет неполного разложения исходных веществ, а также уменьшить количество примесей, поступающих из материалов аппаратуры. Способ получения халькогенидных стекол включает загрузку исходных веществ, содержащих мышьяк и серу, в проточный плазмохимический реактор, инициирование реакции взаимодействия мышьяка и серы высокочастотным плазменным разрядом в условиях неравновесной плазмы при пониженном давлении с образованием шихты халькогенидного стекла и получение самого халькогенидного стекла. В качестве исходных веществ используют элементарные мышьяк As и серу S, а в качестве транспортного и плазмообразующего газа используют инертный газ. Получение самого халькогенидного стекла проводят путем отпайки реактора и установки его в качающуюся печь, плавления и гомогенизации стеклообразующих соединений и охлаждения их. Устройство содержит плазмохимический реактор и систему откачки. Реактор изготовлен в виде проточной кварцевой трубки, снабженной плазмообразующей системой и системой диагностики, а система напуска выбранной газовой смеси включает особо чистые кварцевые резервуары с загрузочными кварцевыми емкостями для твердотельных мышьяка и серы. 2 н. и 1 з.п. ф-лы, 1 ил., 2 табл.
Изобретение относится к получению кремнийсодержащих материалов, которые используются в процессах получения полупроводникового кремния

Изобретение относится к устройству для очистки тетрафторметана

Изобретение относится к способам очистки веществ и касается разработки способа глубокой очистки аммиака, используемого в технологии получения эпитаксиальных структур нитридов кремния, галлия, алюминия и других материалов, применяемых в опто- и микроэлектронике

Изобретение относится к мембранной технологии разделения газовых смесей и может быть использовано в химической, нефтехимической, газовой и других отраслях промышленности
Изобретение относится к способам разделения смесей летучих веществ в процессах химической технологии и может быть использовано для разделения смесей хлорсиланов, гидридов, фторидов, органических продуктов и других продуктов с выделением целевого продукта

 


Наверх