Патенты автора Поляков Евгений Валентинович (RU)

Изобретение относится к способу получения сорбента состава Al2O3/С, включающему термообработку раствора нитрата алюминия в органическом соединении и последующее прокаливание в инертной атмосфере, характеризующемуся тем, что в качестве органического соединения используют этиленгликоль при молярном соотношении нитрат алюминия : этиленгликоль 1 : 4,0÷4,5; термообработку раствора осуществляют путем выдержки при температуре 120-130°С в течение 0,5-3,0 ч, а прокаливание осуществляют при температуре 700-750°С в течение 0,5-1,0 ч. 2 ил., 1 табл., 2 пр.

Изобретение относится к области сорбционных технологий дезактивации воды и водных растворов и может быть использовано для обработки природной воды. Способ очистки воды, загрязнённой тритием, включает ее обработку природной или синтетической гуминовой кислотой в жидком или порошкообразном состоянии, вводимой в соотношении гуминовая кислота:вода, загрязнённая тритием, равном 1:4÷5. Доводят путем добавления серной кислоты при перемешивании рН ≤ 4 и отделяют осадок фильтрацией через бумажный фильтр или коллоидно-химической экстракцией. Изобретение позволяет обеспечить высокий коэффициент распределения гуминовой кислоты, а также хранение конечного продукта, обогащенного тритием, без нарушения экологических норм и без создания специальных условий. 1 з.п. ф-лы, 1 табл.

Изобретение относится к области получения фотокаталитически активных полупроводниковых пленок. Предложен способ получения фотокаталитически активной пленки, включающий осаждение ионов Cu+2 в виде оксида меди или гидроксида меди из раствора неорганической соли меди на подложку. Осаждение ведут из раствора аммиаката хлорида меди(II) с концентрацией 0,3-3,0 моль/л при температуре 45-75°С при концентрации свободного аммиака 4,0-11,2 моль/л. При этом в качестве подложки используют силикагель, стекло, никелевую фольгу. Способ позволяет получать фотокаталитически активную пленку в одну стадию как на плоских образцах стекла, металлической фольги, так и на порошкообразных материалах, например на порошке силикагеля. 3 ил., 4 пр.

Изобретение относится к химической технологии и может быть использовано при изготовлении сорбентов, катализаторов и носителей для катализаторов, сенсоров, газовых накопителей, конструкционных, футеровочных, оптических материалов и электродов для высокоёмких источников тока и энергетических преобразователей. Соль карбоновой кислоты цинка или алкоксид цинка или титана термообрабатывают в инертной атмосфере при 450-500оС в течение 1,0-1,5 ч. Полученный продукт обрабатывают 10%-ной муравьиной кислотой или смесью концентрированных плавиковой и азотной кислот при температуре 60-65оС с выдержкой в течение 3-5 ч. Осадок отделяют вакуумным фильтрованием, промывают дистиллированной водой и сушат при температуре 100-110оС в течение 1,0-1,5 ч. Получают наноструктурированные углеродные материалы с высокой удельной поверхностью простым и надежным способом. 2 ил., 6 пр.

Изобретение может быть использовано в гидрометаллургии для очистки водных растворов от тяжелых металлов и радионуклидов, а также для очистки сточных и грунтовых вод. Способ осуществляют путем сорбции на сорбенте с использованием в качестве фильтрующего средства трековых мембран, при этом порошкообразный сорбент с размерами частиц 0,01-5000 мкм или его коллоидный раствор предварительно помещают в пакет произвольной формы, изготовленный из трековой мембраны на основе полиэтилентерефталата толщиной 50-75 мкм с размером пор, равным 0,01-10 мкм, причем сорбент занимает 5-80% от общего объема, а края торцевой части пакета герметично соединены путем склеивания. В качестве порошкообразного сорбента используют силикагель SiO2, катионит KУ2(Na), берлинскую лазурь. Способ обеспечивает конструктивно простую и эффективную технологию удаления тяжелых металлов и радионуклидов. 1 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

Изобретение относится к технологии обращения с радиоактивными отходами, в частности с низко- и среднеактивными жидкими радиоактивными отходами (ЖРО) с получением продукта, пригодного для долгосрочного хранения. Способ переработки радиоактивных ионообменных смол включает термохимическую обработку смол серосодержащим реагентом, в качестве которого используют элементарную серу, вводимую с избытком по отношению к исходной массе ионообменных смол, а термохимическую обработку проводят при температуре 480-500°C. При этом элементарную серу могут вводить при соотношении сера : ионообменная смола 2÷30:1. Изобретение обеспечивает наряду со значительным уменьшением объема продукта, подлежащего хранению, простоту и надежность процесса. 1 з.п. ф-лы, 5 ил., 1 табл.

Изобретение относится к гидрометаллургии редких металлов. В предложенном способе осуществляют экстракцию редкоземельных металлов из азотнокислых растворов экстрагентом с образованием экстрагируемых комплексов и промывку насыщенного экстракта, содержащего комплексы редкоземельных металлов, с использованием каскадной многоступенчатой системы процесса экстракции. При этом используют каскадную многоступенчатую систему, состоящую из экстракционной, промывной и реакционной частей, каждая часть которой включает пять ступеней соответственно. В качестве экстрагента подают смесь, состоящую из версатика, ТБФ и дизельного топлива, взятых в соотношении об.%: 40:10:50, и ведут экстракцию в присутствии аммиака. При этом промывку насыщенного экстракта ведут от ионов NO3 раствором хлористого аммония с концентрацией 1N, а после промывки проводят стадию реэкстракции насыщенного экстракта редкоземельных металлов путем обработки раствором соляной кислоты с концентрацией 1N с получением раствора хлоридов редкоземельных металлов. Обеспечивается упрощение процесса. 7 з.п. ф-лы, 1 ил., 1 пр.

Изобретение может быть использовано для разделения редкоземельных металлов РЗМ и получения церия и сопутствующих ему других редкоземельных металлов. Способ разделения РЗМ из растворов включает получение азотнокислых растворов РЗМ растворением карбонатов РЗМ в азотной кислоте, экстракцию катионов РЗМ в трибутилфосфат и последующее разделение извлекаемых РЗМ путем реэкстракции, Перед получением азотнокислых растворов РЗМ их карбонаты предварительно окисляют продувкой горячим воздухом с температурой от 300 до 350°С. Окисленные карбонаты РЗМ растворяют в 60-70%-ной азотной кислоте при конечной температуре раствора не выше 100-120°С. Затем ведут экстракцию РЗМ в трибутилфосфат при содержании суммы оксидов РЗМ до 600-650 г/л в исходном азотнокислом растворе и реэкстракцию раствором перекиси водорода в азотной кислоте. Для получения оксида церия после реэкстракции ведут осаждение оксалата церия с последующей его прокалкой при 900°C. Техническим результатом изобретения являются упрощение технологии, повышение коэффициента разделения церия и других редкоземельных металлов и получение высокочистого церия с содержанием основного вещества до 99,985%. 6 з.п. ф-лы, 2 табл., 2 пр.

Изобретение относится к области сорбционной технологии извлечения радионуклидов и микроэлементов при переработке различных жидких и твердых объектов радиохимических производств. Заявленный способ включает контактирование с сорбентом на основе цианоферрата переходного металла, при этом контактирование осуществляют в среде суспензии, содержащей гуминовую кислоту в количестве 0,15-0,25 г/л по отношению к объему обрабатываемого раствора или 0,15-0,25 г/дм2 по отношению к поверхности обрабатываемого объекта, при соотношении Tсорб:Ж не менее 0,001 кг/л. Техническим результатом является возможность повышения степени очистки от радионуклидов и микроэлементов загрязненных объектов радиохимической промышленности. 1 табл.

Изобретение относится к области порошковой металлургии. Нанодисперсные порошки могут быть использованы для изготовления инструментов, близких по твердости и износоустойчивости к инструментам на основе алмаза. Способ (вариант 1) позволяет получить нанодисперсный порошок карбида вольфрама. Смесь вольфрамовой кислоты H2WO4 или паравольфрамата аммония (NH4)10W12O42·nH2O и глицерина С3Н8О3, взятых в стехиометрическом соотношении, нагревают. Полученный прекурсор прокаливают в атмосфере инертного газа при температуре 1100-1050°С с выдержкой в течение 1-2 ч. Способ (вариант 2) позволяет получить нанодисперсный порошок цементированного карбида вольфрама состава WC-nCo(Ni), где n - 5-10 мас.% от общего. Смесь вольфрамовой кислоты H2WO4 или паравольфрамата аммония (NH)10W12O42·nH2O, формиата кобальта Со(НСОО)2·2H2O или формиата никеля Ni(НСОО)2·2Н2О и глицерина С3Н8О3, взятых в стехиометрическом соотношении, нагревают. Полученный прекурсор прокаливают в атмосфере инертного газа при температуре 1000-1050°С с выдержкой в течение 1-2 ч. Изобретение обеспечивает простое и надежное получение нанодисперсного порошка карбида вольфрама. 2 н.п. ф-лы, 5 ил., 4 пр.

Изобретение относится к способу изготовления фильтрующих элементов и поворотному приспособлению для его осуществления
Изобретение относится к области сорбционной технологии извлечения радионуклидов из водных сред и может быть использовано для очистки сбросных растворов радиохимических производств, природных водных растворов от опасных радиоактивных загрязнителей путем их извлечения в сорбент
Изобретение относится к охране окружающей среды, а именно к области сорбционной технологии, используемой для очистки водных растворов от ионов металлов

 


Наверх