Патенты автора Родионов Александр Александрович (RU)

Изобретение относится к горнодобывающей отрасли и, в частности, к способам выявления геологических нарушений в углепородном массиве потенциально опасных по динамическим явлениям зон, прогнозу выбросоопасных зон. Техническим результатом предлагаемого изобретения является повышение точности определения внутренней структуры углепородного массива, угольного пласта исследуемого участка (блока) в двумерной системе координат. Способ включает размещение электродов четырехэлектродной установки в оконтуривающих изучаемый участок выработках, возбуждение электрического поля через токовые электроды А и В, измерение его величины через измерительные электроды. Причем электроды питающего диполя АВ размещают в одной выработке, электроды приемного диполя MN – в другой выработке, при этом электроды А и М размещают в кровле пласта, электроды В и N – в почве пласта. Питающий и приемный диполи располагают таким образом, что условная линия, проведенная между их концами, находится под углом к направлению выработки, который является углом зондирования, угол задают условно и сохраняют при перемещении диполей в пределах выемочного столба, определяют падение напряжений на питающих и приемных электродах в каждом положении диполей, по которым строится образ Радона для заданного угла зондирования. Затем данные операции повторяют при других значениях угла зондирования для получения других образов Радона, по которым методом двумерной фильтрации определяют функцию поглощения электрического поля углепородным массивом по формуле , где: , - разность потенциалов, μ - коэффициент поглощения или линейный коэффициент ослабления, dt - приращение – дифференциал координаты t в повернутой на угол системе координат ost, и, используя полученную функцию поглощения электрического поля, строят томографическую модель исследуемого участка, на которой определяются участки поглощения электрического поля, по которым выявляются места возможных выбросоопасных зон, геологических нарушений, определяются границы зон и геологических нарушений на исследуемом участке. 3 ил.

Изобретение относится к горнодобывающей отрасли и, в частности, к способам прогнозирования горно-геологических условий добычи угля. Техническим результатом изобретения является определение электрических неоднородностей и повышение точности прогноза участков неоднородности угольного пласта. Способ диполь-дипольного электропрофилирования угленосного массива горных пород для прогноза участков неоднородности угольного пласта включает размещение электродов четырехэлектродной установки в оконтуривающих изучаемый участок выработках, возбуждение электрического поля через токовые электроды А и В, измерение его величины через измерительные электроды. При этом электроды питающего диполя АВ размещают в одной выработке, электроды приемного диполя MN - в другой выработке, при этом электроды А и М размещают в кровле пласта, электроды В и N - в почве пласта, питающий и приемный диполи в процессе измерений перемещают по заданной схеме, а результаты измерений наносят на план горных работ в виде кривых кажущегося электросопротивления, по которым судят о местах неоднородности угольного пласта. 3 ил.

Изобретение относится к способу изготовления топологически оптимизированного рабочего колеса водометного движителя прямым лазерным выращиванием. Строят 3D-модель рабочего колеса. Строят технологическую 3D-модель рабочего колеса путем топологической оптимизации и детализации упомянутой 3D-модели по прочности, по жесткости, по припускам на механическую постобработку, по усадке, по деформации и по пространственным ограничениям перемещения головы лазерной установки относительно выращиваемой заготовки рабочего колеса, формулируя технологические ограничения на минимально реализуемых размерах элементов и толщин стенок ступицы и лопастей рабочего колеса. Послойно разбивают технологическую 3D-модель на слои с шагом вертикального смещения слоев от 0,15 до 1,1 мм и шагом поперечного смещения от 0,6 до 2,5 мм, создают управляющую работой лазерной установки программу и ведут последовательное послойное выращивание рабочего колеса из металлического порошка из нержавеющих сталей или титановых сплавов или медных сплавов (бронз) с размером фракций от 20 до 200 мкм. Расход транспортно-защитного газа обеспечивают от 10 до 30 л/мин, массовый расход подачи порошка от 5 до 100 г/мин, мощность лазерного излучения от 0,7 до 3 кВт, диаметр пятна зоны обработки от 1 до 5 мм, а скорость перемещения лазерной головы относительно подложки от 5 до 45 мм/с. Технический результат состоит в снижении металлоемкости изделий сложной геометрической формы, изготовленных из нержавеющих сталей, титановых и медных сплавов при сохранении их характеристик по прочности, жесткости и геометрической точности. 1 ил.

Использование: для контроля и (или) измерения давления жидкостей и газов. Сущность изобретения заключается в том, что интегральный преобразователь давления содержит кремниевый кристалл n-типа проводимости с плоской рабочей поверхностью и тонкой квадратной мембраной в центре кристалла с обратной стороны, на рабочей поверхности кристалла сформированы радиальные тензорезисторы р-типа проводимости, соединенные с помощью металлической электрической разводки в мостовую схему, на поверхности мембраны с обратной стороны кристалла методом анизотропного травления сформирован квадратный жесткий центр, по периметру мембраны и жесткого центра с рабочей стороны кристалла выполнены одинаковые по форме и размерам тензорезисторы, соединенные попарно, образуя четыре полумоста, с возможностью выбора идентичных рабочих тензорезисторов для настройки температурных уходов выходного сигнала, на рабочей поверхности кристалла вне зоны мембраны выполнены гальванически развязанные три группы сопротивлений из последовательно соединенных резисторов, с возможностью выборки номинала сопротивления для настройки выходных сигналов, четыре последовательно соединенные терморезистора расположены на одинаковом расстоянии друг от друга по периметру рабочей поверхности кристалла. Технический результат: обеспечение возможности увеличения точности и надежности преобразователя. 1 з.п. ф-лы, 2 ил.

Изобретение относится к радиоэлектронной технике и может быть использовано при преобразовании сигнала входного электрического тока в выходной сигнал напряжения. Изобретение предполагается к использованию в составе схем радиоэлектронных устройств различного назначения, а также в составе функционального узла микросхем. Техническим результатом предлагаемого изобретения является достижение более низкого входного сопротивления по сравнению со схемой-прототипом и, как следствие, уменьшение ошибок преобразования и повышение линейности преобразования. Предложен линейный преобразователь тока в напряжение, включающий элементы электрической цепи, источник напряжения, операционный усилитель, неинвертирующий усилитель, соединенные между собой. Отличительными особенностями является то, что неинвертирующий усилитель выполнен в виде усиленного каскада радиоэлектронных компонентов из полупроводниковых материалов, вход которого подключен на выход операционного усилителя, а выход соединен с резистором и инвертирующим входом операционного усилителя, и образует петлю отрицательной обратной связи по напряжению, ток для преобразования подается на выход неинвертирующего усилителя, а преобразованный сигнал напряжения снимается с резистора в цепи питания неинвертирующего усилителя. 3 ил.

Изобретение относится к измерительной технике. Микромеханический волоконно-оптический датчик давления выполнен на основе оптического волокна, содержащего участки ввода и вывода излучения, а также участок, размещенный в пропускном канале корпуса. При этом пропускной канал включает участок для размещения оптического кабеля параллельно основанию корпуса и выполнен в виде паза с рифленой поверхностью в основании. Волокно в пазу прижато к вершинам выступов рифленой поверхности пластинами и выполнено с решетками Брега. Пластины выполнены в виде кремниевых кристаллов, на которых сформированы мембраны одинаковой толщины hм, при этом первая мембрана имеет один квадратный жесткий центр, размещенный в центре, вторая мембрана - два одинаковых квадратных жестких центра, расположенных вдоль участка оптического волокна на расстоянии l по обе стороны от центра мембраны. Техническим результатом является повышение точности измерения за счет повышения чувствительности микромеханического волоконно-оптического датчика давления. 3 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к контрольно-измерительной технике и может быть использовано для непрерывного неразрушающего контроля, оценки и прогнозирования технического состояния конструкций корпуса судна в период эксплуатации

Изобретение относится к области дозиметрических приборов и может быть использовано для контроля радиационной обстановки на предприятиях при проведении работ, связанных с дезактивацией, и для индивидуального дозиметрического контроля

 


Наверх