Патенты автора Юдина Татьяна Борисовна (RU)

Изобретение относится к области охраны окружающей среды в части дезактивации и утилизации нефтезагрязненных грунтов (НЗГ) с повышенным содержанием естественных радионуклидов (ЕРН), и может быть использовано при рекультивации и реабилитации территорий. Нефтезагрязненные грунты предварительно экструдируют до размера 1-8 мм, обжигают экструдаты в окислительных условиях при избытке воздуха в диапазоне температур 600-700°С в течение 0,5-1 ч с получением огарка (Т). Перколяционным методом из огарка на первой стадии выщелачивают сначала кальций, затем барий и радий водными растворами гидроксида натрия - 8-15 г/дм3 и динатриевой соли этилендиаминтетрауксусной кислоты - 20-50 г/дм3 (Ж). Процесс ведут при рН 10-12, температуре 20-25°С, объемном отношении Ж:Т=3:1, с получением нерадиоактивного технического грунта и маточных растворов выщелачивания. Из маточного раствора первой стадии выщелачивания осаждают кальций в виде CaSO4⋅2Н2О серной кислотой при рН 3,5-4,0. Из маточного раствора второй стадии выщелачивания осаждают барий и радий в виде Ba(Ra)SO4 серной кислотой при рН 6,0-7,0. Образованные пульпы поступают на раздельную фильтрацию осадков в виде нерадиоактивного CaSO4⋅2H2O и радиоактивного Ba(Ra)SO4. Регенерацию нерадиоактивных фильтратов проводят раздельно. Регенерированный раствор возвращают в оборотный цикл 3-5 раз на стадии выщелачивания. Изобретение позволяет повысить эффективность способа, обеспечивающего снижение уровня средней удельной активности нефтезагрязненных грунтов до значений, при которых они могут быть применены при рекультивации территорий. 1 з.п. ф-лы, 5 табл.

Изобретение относится к комплексной переработке фосфогипса. Технология может быть использована при производстве концентрата редкоземельных элементов (РЗЭ), а также гипсовых строительных материалов. Способ переработки фосфогипса включает предварительное гранулирование фосфогипса с серной кислотой с последующим перколяционным выщелачиванием гранулированного материала раствором серной кислоты с концентрацией до 0,1 мас.% в режиме рециркуляции раствора между стадиями выщелачивания и сорбции. Дальнейшую десорбцию тория и кальция осуществляют раствором нитрата аммония с концентрацией 80-120 г/л. Десорбцию РЗЭ осуществляют раствором нитрата аммония с концентрацией 240-280 г/л. Осаждение концентрата РЗЭ проводят раствором гидроксида аммония с концентрацией 150-300 г/л. Способ обеспечивает повышение производительности, эффективность и универсальность переработки фосфогипса и увеличение содержания РЗЭ в получаемом гидроксидном концентрате. 3 з.п. ф-лы, 5 табл.

Изобретение относится к переработке золошлаковых отходов ТЭЦ с целью извлечения из них редкоземельных металлов и скандия и последующем использовании их в производстве строительных материалов. Способ извлечения редкоземельных металлов и скандия из золошлаковых отходов включает перколяционное выщелачивание серной кислотой. При этом выщелачивание проводят из гранулированного материала раствором серной кислоты 5-15 г/л при температуре 18-25°C и Ж:Т=2:1-1:1 в режиме рециркуляции продуктивного раствора в замкнутом цикле выщелачивание-сорбция. Далее проводят сорбцию суммы редкоземельных металлов сульфокатионитом из сернокислого раствора выщелачивания, затем - сорбцию скандия аминофосфорсодержащим амфолитом из фильтратов сорбции редкоземельных металлов. Обработанный сорбентами фильтрат возвращают на перколяционное выщелачивание. Техническим результатом изобретения является создание рациональной, экономной, технологичной, экологически безопасной комплексной, поточной технологии утилизации золошлаковых отходов ТЭЦ. 1 ил., 5 табл., 5 пр.

Изобретение относится к способу разложения щавелевой кислоты из азотнокислых маточных растворов на биметаллическом платино-рутениевом катализаторе. Процесс ведут в динамических условиях в сорбционной колонке, заполненной биметаллическим платино-рутениевым катализатором при соотношении платины к рутению (0,4-0,5):(0,6-0,5). При этом исходный раствор подают в колонку снизу вверх, разложение щавелевой кислоты проходит в колонке с выделением газообразных продуктов, а очищенный раствор свободно перетекает в приемную емкость. Предлагаемый способ позволяет повысить скорость разложения щавелевой кислоты и увеличить степень ее разложения в динамических условиях по сравнению со статическими условиями. 1 з.п. ф-лы, 2 ил., 3 табл., 4 пр.

Изобретение относится к переработке полиметаллических руд грануляцией и последующим кучным выщелачиванием. Грануляцию руды осуществляют раствором серной кислоты с расходом 0,033-0,2 т/т руды. В качестве связующей добавки используют жидкое стекло с расходом 0,0-2,0%. Расход жидкого стекла зависит от содержания глинистых минералов в руде. Расход серной кислоты выбирают в зависимости от кислотоемкости руды. Состав исходного материала может продиктовать необходимость введения добавок - окислителей и дополнительных вяжущих. Затем следует стадия вылеживания, при которой удаляется лишняя влага, а гранулы приобретают прочность. Вылежанные гранулы штабелируют в кучи и выщелачивают водой или слабокислым раствором серной кислоты. Техническим результатом является повышение извлечения ценных компонентов в продуктивный раствор, снижение расхода выщелачивающего раствора, уменьшение времени отработки штабеля, уменьшение объемов продуктивных растворов и, как следствие, объемов сбросных растворов; предотвращение кольматации кучи. 4 з.п. ф-лы, 1 ил., 2 табл., 3 пр.
Изобретение относится к химии и технологии йода и может быть использовано для извлечения йода из природных и техногенных растворов или из газовоздушной смеси. Способ заключается в сорбции йода и последующей десорбции. В качестве сорбента используют активный уголь, полученный из косточек плодов и скорлупы орехов, подвергнутый двухстадийной карбонизации в потоке диоксида углерода. Для десорбции йода применяют 0,5-1 н раствор щелочного реагента. В качестве щелочного реагента используют раствор гидроокиси аммония или смесь сульфита натрия и гидроокиси аммония или натрия. Технический результат заключается в повышении степени очистки растворов и газовых смесей от йода. 2 з.п. ф-лы, 6 табл., 4 пр.
Изобретение относится к способам извлечения благородных металлов и может быть использовано для извлечения благородных металлов из минерального сырья, содержащего хлориды щелочных и щелочно-земельных металлов, например шламов калийного производства
Изобретение относится к способу переработки урановой руды
Изобретение относится к способам извлечения благородных металлов и может быть использовано для извлечения благородных металлов (платина, палладий, золото и др.) из различных видов минерального сырья, содержащего хлориды щелочных и щелочно-земельных металлов, например, коллективного концентрата, полученного из глинисто-солевых отходов (шламов) калийного производства, маркирующих глин и др
Изобретение относится к области получения чистых металлов способом иодидного рафинирования и может быть применено для получения иодидного гафния и других металлов

 


Наверх