Патенты автора Айзенштадт Аркадий Михайлович (RU)

Изобретение относится к технологии изготовления строительных материалов с применением цемента, а именно к контролю качества цемента, и может быть использовано в качестве экспресс-метода определения активности цемента. Способ определения активности цемента по предварительно построенной калибровочной зависимости заключается в том, что опытные образцы изготавливают в виде запрессовок испытуемого цементного порошка, на образцы наносят каплю рабочего раствора, измеряют краевой угол смачивания, рассчитывают его косинус и по предварительно построенной калибровочной зависимости прочности на сжатие, определенной для балочек из цемента разных марок, от значения косинуса краевого угла смачивания поверхности порошков цемента рассчитывают линейное уравнение, по которому определяют значение активности испытуемого цемента. Разработанный способ позволяет оперативно получать данные о фактическом значении активности цемента. 2 з.п. ф-лы, 1 ил., 1 пр.
Изобретение относится к промышленности строительных материалов, а именно к способу получения магнезиального вяжущего на основе отходов алмазной промышленности, и может быть использовано для производства сухих строительных смесей, теплоизоляционных материалов и т.д., как заменитель портландцемента при изготовлении бетонов, растворов, железобетонных конструкций. Способ характеризуется тем, что в качестве отходов используют сапонитсодержащий материал (ССМ), который измельчают до размера частиц 1200-1300 нм. Затем обжигают при температуре 800-900 °С. Затворяют водным раствором хлорида магния с плотностью 1,2 г/см3 в следующем соотношении компонентов, мас.ч.: ССМ – 2,5; раствор хлорида магния – 1. Техническим результатом является упрощение процесса получения вяжущего, утилизация отходов алмазной промышленности при получении вяжущего, а также повышение скорости твердения и конечной прочности вяжущего. 1 пр., 1 табл.
Изобретение может быть использовано в горнодобывающей промышленности в процессах обогащения алмазоносных кимберлитовых пород для осветления оборотной воды. Способ очистки воды от сапонитсодержащего материала и песка включает разбавление водой пробы пульпы, взятой с глубины хвостохранилища не ниже 1 м, с концентрацией взвешенных веществ от 300 до 400 г/л, в соотношении 1:1, отстаивание в течение 30 мин. Отбирают верхний слой, который представляет собой осветленную суспензию с сапонитом, в отдельную емкость, оставляя при этом песок на дне. В полученную суспензию добавляют магний хлористый шестиводный в 0,01 М растворе гидроксида натрия с концентрацией 0,15 моль/л в количестве 20 мл на 1000 мл суспензии, перемешивают в течение 5 мин и выдерживают в течение 120 мин. Изобретение позволяет обеспечить получение очищенной технологической воды после процесса обогащения, снизить экологическую нагрузку на окружающую среду и выделить сапонит - ценный сырьевой материал в индустрии стройматериалов. 2 пр.
Изобретение относится к строительным материалам. Описан способ получения добавки, модифицирующей нефтяные битумы, включающий приготовление древесного заполнителя - коры сосны обыкновенной со средним размером частиц 2-4 мм, поровое пространство которой заполнено тонкодисперсным наполнителем из базальта, и введение ее в обезвоженный битум, предварительно разогретый до 120-140°С, в количестве 5,0-10,0% по массе от исходной массы битума, причем производят удаление водорастворимых экстрактивных веществ из коры путем экстракции водой с последующей температурной обработкой при 60°С в течение трех суток, предварительный помол базальта при помощи планетарной шаровой мельницы, используя карбидвольфрамовую гарнитуру до фракции 200-300 нм в течение 30 минут с последующим высушиванием в сушильном шкафу при 110°С в течение часа, далее выполняют совместный мокрый помол базальта и коры в соотношении по массе: кора – 65 %, мелкодисперсный базальт – 25 %, вода – 10 % в течение 5 минут. Технический результат – улучшение теплофизических характеристик битума. 1 табл., 2 пр.
Изобретение относится к области производства строительных материалов и может быть использовано для получения эффективных самовосстанавливающихся строительных растворов, бетонов, сухих строительных смесей с использованием гибридных органоминеральных микрокапсул. Технический результат заключается в получении гибридных органоминеральных микрокапсул, способных сохранять свое действие при использовании в течение всего жизненного цикла строительного материала. Способ получения гибридных органоминеральных микрокапсул для бетонных смесей и строительных растворов, заключающийся в том, что смешивают тонкодисперсную смесь активной пуццолановой добавки, в качестве которой используют сапонитсодержащий материал со средним размером частиц не менее 200 нм и не более 400 нм, с механоактивированной известью сопоставимой степени дисперсности и биоразлагаемым полимером, в качестве биоразлагаемого полимерного связующего используют ацетаты целлюлозы, смесь перемешивают, после чего выдерживают до полной полимеризации в течение 20 мин с дальнейшим ее измельчением до размера частиц не более 1 мкм. 1 пр.
Изобретение относится к лакокрасочным материалам и может быть использовано для наружной окраски зданий и сооружений по деревянным поверхностям в строительстве. Органоминеральный дисперсный лакокрасочный материал получают при смешении полимерной основы - жидкий акрил «Пластол-Титан» и наполнителя - базальта, имеющего разную степень дисперсности. Диспергирование базальта проводят в сухой фазе любым известным способом, например на планетарной шаровой мельнице PM 100, в течение 60 и 120 мин при скорости вращения 420 об/мин с использованием карбидвольфрамовых размольных тел диаметром 20 мм в количестве 18 шт. Измельченный базальт со средним размером частиц в диапазоне от 336,8±34,5 до 429,4±25,4 нм вводят в жидкий акрил в следующих соотношениях по массе: 1 часть базальта и 3 части акрила, 1 часть базальта и 1 часть акрила, 3 части базальта и 2 части акрила и смешивают при помощи гомогенизатора. Технический результат - обеспечение покрытия различной цветовой интенсивности, обладающее хорошими реологическими и потребительскими свойствами, стойкостью к истиранию, прочностью, эластичностью. 1 табл., 2 пр.
Изобретение относится к области деревообработки для ускоренной, по сравнению с естественной, петрификации пиломатериалов и может быть использовано для пропитки пиломатериалов и аналогичных продуктов из древесины. Описан состав для ускоренной петрификации пиломатериалов, содержащий экстракт древесины лиственницы и золь кремнезема, образующие растворимый комплекс при следующем соотношении компонентов: 1 часть водного раствора порошкообразного экстракта древесины лиственницы и 4 части золя кремнезема. Технический результат: предложен состав, заменяющий органические части древесной матрицы на минеральный компонент для ускоренного получения искусственно окаменелой древесины.
Изобретение относится к производству строительных материалов и может быть использовано при изготовлении легких бетонов и изделий конструкционного назначения из него. Сырьевая смесь для получения легкого бетона включает, мас.%: портландцемент 33, песок 13, высокодисперсную добавку песка, полученную предварительным механическим измельчением песка до среднемассового размера частиц 2,0±0,2 мкм, 20, 1N раствор соляной кислоты 21, воду 13, при получении бетонной смеси сначала перемешивают сухие компоненты, затем производят затворение смеси водой с кислотой. Технический результат – повышение прочностных характеристик бетона при снижении его плотности. 1 табл.

Изобретение относится к области производства строительных материалов и может быть использовано при производстве термостойкой конструкционной теплоизоляции на основе минеральных волокон. Теплоизоляционное изделие на минеральном связующем, полученное из смеси, содержащей в качестве связующего водную суспензию сапонитсодержащего материала, а в качестве волокнистого заполнителя - базальтовые волокна при следующем соотношении компонентов смеси, мас. %: сапонитсодержащий материал 15-25%, базальтовые волокна 75-85%. Причем указанная смесь подвергается термической модификации при температуре до 1200°С. Техническим результатом является увеличение конструкционной прочности. 1 табл.

Изобретение относится к строительству и, в частности, к инъекционному закреплению бутовой кладки фундамента при реконструкции зданий и сооружений. Способ усиления фундамента включает проходку в нем скважины, установку трубы-инъктора и нагнетание закрепляющего состава. После установки трубы-инъектора вдоль боковой поверхности с двух сторон фундамента и в ранее выполненную скважину, через которую уже осуществлена инъекция, погружают электроды. В закрепляющий состав вводят добавку порошка электропроводного материала, а в ходе нагнетания закрепляющего состава измеряют электрическое сопротивление тела фундамента между трубой-инъектором и каждым из электродов. Технический результат состоит в повышении надежности инъекционного закрепления бутовой кладки фундамента за счет обеспечения возможности контроля качества в процессе производства работ. 1 табл., 4 ил.

Изобретение относится к строительству, а именно к технологии изготовления буровых и набивных свай. Способ выявления и устранения дефектов изготавливаемой в грунте сваи включает формирование скважины, установку в нее арматурного каркаса, прокладку линий связи, подачу в скважину отверждаемого состава, например бетонной смеси. Перед установкой арматурного каркаса на нем закрепляют электроды и соединяют их с линиями связи. После подачи в скважину отверждаемого состава осуществляют мониторинг его электропроводности, а при обнаружении дефекта ствола выполняют частичную откачку отверждаемого состава, устраняют дефект и повторно подают отверждаемый состав в скважину. Технический результат состоит в повышении надежности изготовляемых в грунте свай за счет обеспечения возможности контроля сплошности ствола и устранения дефектов в процессе производства работ. 1 табл., 4 ил.

Изобретение относится к области строительства дорожных оснований и оснований инженерных коммуникаций и может быть использовано для укрепления песчаных грунтов. Органоминеральная добавка для укрепления песчаных грунтов, включающая измельченный сапонит-содержащий материал, выделенный из пульпы хвостохранилища промышленного обогащения руд месторождения алмазов, отличающаяся тем, что она содержит указанный сапонит-содержащий материал, измельченный до размера частиц 307±83 нм, и дополнительно связующее - 5%-ный раствор глиоксаля, при следующем соотношении компонентов, мас.% песчаного грунта: указанный глиоксаль - 0,52; указанный сапонит-содержащий материал 17. Технический результат - повышение прочностных характеристик песчаного грунта. 2 табл., 2 ил.
Изобретение относится к области получения композитных строительных материалов и может быть использовано в технологии изготовления древесно-минеральных плит, применяемых в качестве несущих, самонесущих стен и перегородок, конструкционных звуко- и теплоизоляционных плит и панелей. Нанокомпозитный материал включает минеральный наполнитель, цемент и воду, причем древесная матрица сформирована из частиц коры сосны ультрадисперсного размера 0,5-1,5 мм, а в качестве минерального наполнителя структуры включены частицы базальта нанометрового размера 50-250 нм. Предлагаемый материал обладает улучшенными экологическими, пожароопасными, звуко- и теплоизоляционными свойствами, повышенными физико-механическими характеристиками, стойкостью к окислительной деструкции и биологически активным средам.
Изобретение относится к производству строительных материалов и может быть использовано при производстве древесно-минеральных плит и отделочных материалов в промышленном и гражданском строительстве. Технический результат заключается в повышении прочности, водостойкости. Нанострутурированный древесно-минеральный композитный материал, включающий древесный заполнитель, связующее и воду, дополнительно содержит армирующий наполнитель из базальта со средним размером частиц 50-100 нм, а в качестве древесного заполнителя используют древесину хвойных пород в виде микродиспергированных частиц древесины со средним размером частиц 1-2 мкм при следующем соотношении компонентов, мас.%: древесина 40-55, базальт 30-40, гашеная известь 10-15, вода остальное. 1 табл.

Изобретение относится к теоретическому и прикладному материаловедению и может быть использовано в различных областях науки и техники в целях создания новых и совершенствования известных методик создания сухих строительных смесей для бетона с заданными эксплуатационными свойствами. Сущность изобретения: предварительно подготовленные образцы с различным количеством наполнителя в высокодисперсном состоянии для сухой строительной смеси помещают в полую часть металлических шайб, расположенных на металлической пластине, уплотняют любым известным способом под постоянной нагрузкой до 5 МПа на 1 см2 поверхности образца в течение 10-15 секунд, затем наносят на поверхность каждого образца метки в виде капель раствора различной концентрации, измеряют углы смачивания образцов θ, строят график зависимости cosθ-1=f(1/σж), где σж - поверхностное натяжение жидкости, определяют тангенс угла наклона данной функциональной зависимости а для каждого образца различного состава, строят график зависимости а от количества компонентов смеси и по точке перелома графика зависимости определяют оптимальное содержание модификатора в испытуемом объекте. Достигаются сокращение количества испытаний и повышение точности подбора состава смеси. 1 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к области строительства дорожных и других оснований и может быть использовано для укрепления песчаных грунтов. Состав для укрепления песчаного грунта, включающий наполнитель и связующий компонент, причем наполнитель содержит измельченный до высокодисперсного состояния песок (74-136 нм), а в качестве связующего компонента применен измельченный до микродисперсного состояния сапонитсодержащий материал (265-451 нм), выделенный из пульпы хвостохранилища промышленного обогащения руд месторождения алмазов, при следующем соотношении компонентов, мас.%: сапонитсодержащий материал 3-6, песок - остальное. Технический результат - повышение прочностных характеристик песчаного грунта. 2 табл. , 3 ил.

Изобретение относится к области строительного материаловедения и может быть использовано при приготовлении строительных растворов и мелкозернистых бетонных смесей. Технический результат заключается в повышении прочности строительных растворов и мелкозернистых бетонных смесей. Состав для приготовления строительного раствора и мелкозернистой бетонной смеси включает, мас.%: базальт со средним размером 360±98 - 30-40%; кремнеземсодержащая порода со средним размером 266±69 - остальное. 2 ил., 2 табл.

Изобретение относится к инженерно-геологическим исследованиям грунтов, в частности к экспресс-методам определения удельного сцепления грунтов. Способ определения удельного сцепления грунтов заключается в том, что на образец грунта наносится 6 капель смачивающей жидкости с известными значениями поверхностного натяжения. Затем по форме капли на поверхности материала определяют угол смачивания поверхности и по функциональной зависимости cosθ-1=f(1/σ) определяют тангенс угла наклона а. Далее по предварительно построенной калибровочной зависимости находят удельное сцепление грунта. Техническим результатом является повышение скорости определения, возможность проведения испытаний как с предварительно отобранными пробами, так и непосредственно на объекте, упрощение аппаратурного оснащения, возможность проведения анализа на любых грунтах, а также повышение точности определения за счет исключения влияния на результат сопротивления грунта вдавливанию по боковым стенкам зонда. 1 ил., 4 табл.

Изобретение относится к способам по испытаниям строительных материалов из бетона, а именно к определению их механических свойств, в частности прочности, как при промежуточном контроле изделий на стадии формирования физико-механических свойств, так и при обследовании конструкций уже построенных зданий и сооружений
Изобретение относится к области деревообработки
Изобретение относится к способам анализа технологических растворов, получаемых при химической переработке древесины, предпочтительно в процессе получения целлюлозно-бумажной продукции, и может быть использовано при анализе сточных вод производства, использующего сульфат-целлюлозную технологию

 


Наверх