Патенты автора Касиков Александр Георгиевич (RU)

Изобретение относится к области цветной металлургии, в частности к гидрометаллургической переработке сырья, содержащего тяжелые цветные и благородные металлы, и может быть использовано для извлечения серебра из растворов выщелачивания пылевидных промежуточных продуктов и отходов. Пылевидные пирометаллургические отходы обрабатывают хлоридным раствором натрия концентрацией 90-250 г/л с образованием раствора выщелачивания, содержащего не более 1 г/л серебра, выделяют серебро сорбцией из раствора выщелачивания неорганическим титаносиликатным сорбентом при отношении Т:Ж=1:60-250 в течение 2-4 ч с отделением насыщенного сорбента. После завершения сорбции производят десорбцию серебра раствором азотной кислоты концентрацией 150-200 г/л с последующей сушкой очищенного сорбента. Способ обеспечивает увеличение степени извлечения серебра из раствора выщелачивания, снижение длительности сорбции и десорбции с обеспечением возможности использования насыщенного сорбента в качестве функционального материала при повышении экологичности процесса. 5 з.п. ф-лы, 4 пр.

Изобретение относится к металлургии благородных металлов и может быть использовано в технологии переработки железного коллектора, содержащего платиновые металлы. Способ включает распульповку коллектора в виде концентрата в воде, введение в пульпу фторирующего агента и последующую обработку полученной реакционной смеси кислотой. В качестве фторирующего агента для удаления кремния используют плавиковую кислоту или аммоний фтористый кислый в количестве, равном 130-180% от стехиометрического. Для обработки реакционной смеси используют серную или соляную кислоту до достижения значения водородного показателя менее 1,0 рН. После чего пульпу прогревают, затем фильтрацией отделяют содержащий соли железа раствор от осадка, содержащего платиновые металлы. Способ позволяет расширить линейку известных методов переработки железных концентратов (коллекторов) с обеспечением селективного выделения платиновых металлов в обогащённый в 14-15 раз осадок. 1 ил., 4 пр.

Изобретение относится к области металлургии, а именно к способам гидрометаллургической переработки шлаков, содержащих тяжелые цветные металлы, железо, кремний и серу. Перерабатывают металлургический шлак, содержащий силикаты железа и примеси сульфидов металлов, в том числе меди и никеля. Проводят его сернокислотное разложение с образованием сероводорода и переводом основной части железа(II) и диоксида кремния в раствор выщелачивания, а в нерастворимый остаток - основной части меди и никеля. Нерастворимый остаток отделяют от раствора выщелачивания. Проводят дегидратацию раствора с получением смеси диоксида кремния и сульфата железа(II), водную отмывку диоксида кремния от сульфата железа(II) и сушку диоксида кремния. Разложение шлака ведут 7-12% серной кислотой при Т:Ж=1:7-10 в присутствии ионов меди, взятых в стехиометрическом или избыточном количестве по отношению к образующемуся сероводороду, и величине окислительно-восстановительного потенциала 250-350 мВ. Полученный нерастворимый остаток шлака подвергают водной промывке. Способ позволяет повысить технологичность и экологичность способа, исключить выделение сероводорода в атмосферу, увеличить содержание диоксида кремния, повысить его удельную поверхность и снизить содержание примесей при обеспечении высокой степени извлечения диоксида кремния. 5 з.п. ф-лы, 8 пр.

Изобретение относится к области строительных материалов. Технический результат заключается в повышении прочности и фотокаталитической активности при одновременном повышении реакционной способности титаносиликатной добавки. Готовят титаносиликатную добавку с использованием золь-гель синтеза. Для синтеза используют растворы сульфата титана и натриевого жидкого стекла с образованием суспензии с рН 1-2, которую подвергают дегидратации при температуре 100-200°С в течение 1-3 часов, с последующей отмывкой порошкообразной добавки от сульфат-ионов и ионов натрия. Порошкообразную добавку подвергают термообработке при 600-800°С и ультразвуковому диспергированию в воде в течение 8-15 минут с образованием титаносиликатной суспензии с концентрацией 2-25 г/л и отношением TiO2:SiO2=0,8-1,0:1. Полученную в виде суспензии титаносиликатную добавку смешивают с портландцементом и водой. После этого в смесь добавляют пластификатор в количестве 0,21-0,28% от массы портландцемента и смесь дополнительно перемешивают. 4 з.п. ф-лы, 2 табл.
Изобретение относится к гидрометаллургии и может быть использовано для очистки от железа хлоридных растворов, образующихся при переработке медно-никелевого сырья и при солянокислотном выщелачивании полиметаллического сырья. Осуществляют обработку хлоридного раствора, содержащего не менее 200 г/л ионов хлора, экстрагентом в виде смеси, содержащей алифатические спирты с числом атомов углерода 8-12 и алифатические кетоны с числом атомов углерода 8-11, при этом спирты и кетоны берут в объемном соотношении 1:0,2-4,0. Способ позволяет повысить степень очистки хлоридного раствора от железа до 99,9% и является более экологичным благодаря использованию нетоксичных компонентов экстракционных смесей. 5 з.п. ф-лы, 5 пр.

Изобретение относится к гидрометаллургии цветных металлов, преимущественно к получению солей никеля и может быть использовано для переработки металлических никельсодержащих отходов. Осуществляют обработку измельченных отходов производства катодного никеля железосодержащим раствором хлорида никеля с концентрацией 2-5 г/л железа(III) и 50-230 г/л никеля при температуре 40-90°C с получением раствора хлорида никеля. Обработку ведут при подаче газообразного хлора и поддержании окислительно-восстановительного потенциала в пределах 550-800 мВ до обеспечения плотности раствора 1,52-1,61 г/дм3. Затем проводят очистку раствора хлорида никеля от примесных компонентов путем его нейтрализации карбонатом или гидроксидом никеля до рН=2,5-3,5 при температуре 60-80°C с получением очищенного раствора хлорида никеля и гидратного железистого кека, который растворяют в соляной кислоте с получением раствора хлорного железа. Способ позволяет повысить чистоту получаемого хлорида никеля при снижении энергоемкости, уменьшении числа операций и повышении безопасности. 7 з.п. ф-лы, 5 пр.
Изобретение относится к гидрометаллургии и может быть использовано для получения растворов хлорного железа из концентрированных хлоридных солевых растворов, образующихся при гидрохлоридной переработке никельсодержащего сырья. Осуществляют экстракционную обработку хлоридного никелевого раствора с концентрацией никеля 160-220 г/л и ионов хлора не менее 200 г/л алифатическими кетонами с числом атомов углерода 9-11 или их смесью с 2-октаноном. Хлоридный никелевый раствор содержит 3-40 г/л железа(III) и сопутствующие компоненты в виде сульфат-иона, кобальта, меди, натрия и свинца. Экстракционную обработку ведут при O:В=1-3:1 на 1-3 ступенях с переводом железа в экстракт, а основной части сопутствующих компонентов - в рафинат. Затем проводят промывку экстракта хлоридным раствором, содержащим 5-8 молей хлорид-иона при O:В=10-20:1 на 1-3 ступенях. В качестве хлоридного раствора для промывки экстракта используют раствор соляной кислоты или раствор хлорного железа. После этого проводят водную реэкстракцию хлорного железа при О:В=5-20:1 на 2-4 ступенях. Техническим результатом является использование нетоксичных экстрагентов при обеспечении глубокого (98,5-99,5%) извлечения железа(III) из исходного хлоридного никелевого раствора. 5 з.п. ф-лы, 5 пр.
Изобретение относится к извлечению палладия из кислых медьсодержащих растворов. Проводят обработку исходного раствора экстрагентом оксимного типа в виде 20-40 об. % раствора экстракционного реагента на основе кетоксима, альдоксима или их смеси в разбавителе при рН 0,2-2,5 и отношении O:В=1-5:1. Исходный раствор может быть хлоридным, нитратным, сульфатным или смешанным. В результате экстракционной обработки медь и палладий переходят в экстракт, из которого медь реэкстрагируют сернокислым раствором, причем после реэкстракции меди экстрагент возвращают на повторную обработку исходного раствора. После накопления в экстрагенте не менее 0,05 г/л палладия проводят реэкстракцию палладия концентрированным раствором соляной кислоты с концентрацией 8-12 моль/л в присутствии 0,1-0,3 моль/л перекиси водорода при отношении O:В=1:1-5. Техническим результатом является повышение концентрации палладия, увеличение степени его извлечения и снижение объема материальных потоков. 4 з.п. ф-лы, 6 пр.
Изобретение относится к гидрометаллургии и может быть использовано при регенерации сернокислых производственных растворов. Сернокислый раствор, содержащий примесные элементы, подвергают экстракционной обработке с переводом основной части серной кислоты в первичный экстракт, а основной части примесных элементов в первичный рафинат. Первичный экстракт отмывают от примесных элементов сернокислым раствором, который присоединяют к исходному сернокислому раствору или первичному рафинату. Отмытый первичный экстракт обрабатывают раствором серной кислоты с получением первичного реэкстракта в виде очищенного раствора серной кислоты с концентрацией 450-600 г/л. Первичный рафинат подвергают экстракционной обработке азот- или фосфорсодержащим экстрагентом с получением вторичного экстракта и вторичного рафината, содержащего 100-250 г/л серной кислоты. Вторичный экстракт подвергают водной реэкстракции с получением вторичного реэкстракта в виде раствора серной кислоты, который используют в качестве реэкстрагента для обработки отмытого первичного экстракта. Способ позволяет повысить концентрацию получаемого очищенного сернокислого раствора до 600 г/л. 7 з.п. ф-лы, 6 пр.
Изобретение относится к способам получения титаносиликатов, используемых в качестве сорбентов с ионообменными и восстановительными свойствами, и может найти применение для концентрирования и выделения благородных металлов. Берут хлоридный титансодержащий реагент в виде четыреххлористого титана или смеси четыреххлористого титана с раствором пероксида водорода в мольном соотношении 1:(8-16) и добавляют к кремнийсодержащему реагенту в виде коллективного раствора силиката натрия и гидроксидов натрия и калия. Содержание компонентов в получаемой суспензии должно удовлетворять мольному соотношению TiO2:SiO2:Na2O:K2O:H2O=l:(4,3-6):(6,4-8,7):(0,8-1):(195-700). Суспензию выдерживают в герметичных условиях при температуре 160-180°C в течение 8-20 ч с образованием твердой фазы в виде титаносиликата фармакосидеритового типа. Твердую фазу отделяют от маточного раствора, промывают дистиллированной водой и сушат. Затем осуществляют модифицирование титаносиликата путем обработки раствором, содержащим гидразин с концентрацией 0,50-1,14 г/л, при Т:Ж=1:(100-400) в течение 0,3-2 ч. Модифицированный титаносиликат отделяют, промывают дистиллированной водой и сушат. Способ позволяет получить монофазный модифицированный ионами гидразиния титаносиликат фармакосидеритового типа, обладающий высокой сорбционной способностью по отношению к благородным металлам. Извлечение благородных металлов в мг на г модифицированного продукта составляет: золото 260-275, платина 110-134, палладий 119-141. 4 з.п. ф-лы, 5 пр.

Изобретение относится к гидрометаллургии цветных металлов и может быть использовано для разделения Ni и Со в растворах, образующихся при выщелачивании Ni-Co сырья. Способ включает предварительное приготовление экстрагента в солевой Ni-Co и Ni формах. Затем осуществляют противоточную экстракцию Со из сульфатного раствора с рН=5-6 при 30-50°С экстрагентом в двух солевых формах с получением Со экстракта и раствора сульфата Ni. При этом исходный сульфатный раствор вначале контактируют с экстрагентом в солевой Ni-Co форме с получением обедненного по Со раствора, который контактируют с экстрагентом в Ni форме. Экстрагент в Ni-Co форме подают на экстракционную ступень, предшествующую ступени, на которую подают исходный сульфатный раствор, а экстрагент в солевой Ni форме - на первую экстракционную ступень. Техническим результатом является снижение относительного содержания Ni в кобальтовом реэкстракте в 6,8-10 раз и повышение производительности процесса. 9 з.п. ф-лы, 1 ил., 4 пр.

Изобретение относится к способу переработки файнштейна с выделением металлизированной фракции. Способ включает окислительное гидрохлоридное выщелачивание путем постепенной подачи металлизированной фракции в хлоридный раствор при ОВП 400-450 мВ с переводом в раствор основной части цветных металлов и концентрированием драгоценных металлов и серы в остатке. Серу выщелачивают из остатка раствором сульфита или сульфида натрия с концентрацией соответственно 150-250 г/л и 100-150 г/л при Т:Ж=1:5-10 с получением концентрата драгоценных металлов и серосодержащего раствора, который направляют на переработку файнштейна. Концентрат драгоценных металлов подвергают жидкофазной сульфатизации при температуре 180-210°C с получением обогащенного концентрата. Возможна дополнительная сульфатизация концентрата драгоценных металлов при температуре 280-300°C с получением платино-палладиевого концентрата и концентрата металлов-спутников платины. Техническим результатом является снижение потерь драгоценных металлов и повышение их содержания в концентрате. Содержание суммы платины и палладия в концентрате возрастает в 1,6-11 раз. 3 з.п. ф-лы, 7 пр.
Изобретение относится к гидрометаллургии цветных металлов и может быть использовано для извлечения свинца из многокомпонентных водных растворов солей цветных металлов и железа при гидрометаллургической переработке никелевого сырья. Хлоридный раствор с концентрацией 5,5-8,0 моль/л хлора и 110-190 г/л никеля обрабатывают органическим экстрагентом в виде смеси, содержащей 10-30 об. % дитиофосфиновой кислоты - Cyanex-301 и 10-30 об. % третичного амина, остальное - инертный разбавитель, с переводом свинца в органическую фазу. В качестве третичного амина используют триалкиламин, триоктиламин или триизооктиламин, а в качестве инертного разбавителя используют «Эскайд-100» или «Шеллсол D-40». Экстракцию ведут при О:В=1:5-10 на 1-3 ступенях в течение 0,5-3 мин. Полученный экстракт промывают в одну стадию раствором серной или соляной кислоты с концентрацией 0,1-1,0 моль/л. После этого осуществляют реэкстракцию свинца 5-8М соляной кислотой при О:В=1:5-10 на 1-2 ступенях в течение 5-10 мин. Способ обеспечивает высокую (до 99,6%) степень извлечения свинца (II) в реэкстракт при меньшем числе операций и снижение продолжительности. 5 з.п. ф-лы, 4 пр.
Изобретение может быть использовано в химической промышленности. Способ переработки титансодержащего материала включает выщелачивание измельченного материала серной кислотой при нагревании с получением суспензии. Затем суспензию фильтруют и отделяют твердый остаток от сернокислого раствора выщелачивания, содержащего соединения титана и железа. Проводят экстракционную обработку раствора выщелачивания, разделение органической и водной фаз, водную реэкстракцию, термический гидролиз с образованием гидроксида титана. Гидроксид титана отделяют и обжигают с получением диоксида титана. Выщелачивание титансодержащего материала осуществляют серной кислотой с концентрацией 600-800 г/л. Экстракционную обработку сернокислого раствора выщелачивания проводят с переводом 55-65 мас.% серной кислоты в органическую фазу, а соединений титана, железа и остаточного количества серной кислоты - в водную фазу. Реэкстракцию ведут с получением раствора серной кислоты. Водную фазу обрабатывают постоянным электрическим током при плотности тока 0,02-0,10 А/см2 до обеспечения содержания Ti2O3 не более 5 г/л и подвергают термическому гидролизу. В качестве титансодержащего материала используют сфеновый, перовскитовый, ильменитовый концентраты с крупностью частиц не более 40 мкм. Изобретение позволяет повысить степень извлечения титана из титансодержащего материала в чистый диоксид титана, уменьшить объем материальных потоков, повысить экологичность. 8 з.п. ф-лы, 4 пр.
Изобретение относится к области металлургии цветных металлов и может быть наиболее эффективно использовано при переработке вскрытием шлаков, содержащих тяжелые цветные металлы, железо, кремний и серу. Способ включает выщелачивание шлака при повышенной температуре путем равномерной загрузки шлака в раствор соляной кислоты с образованием пульпы и ее выдержки с переводом цветных металлов и железа в жидкую фазу, а диоксида кремния в твердую фазу. Затем проводят разделение жидкой и твердой фаз. При этом перед загрузкой шлак измельчают до крупности частиц не более 100 мкм. Выщелачивание ведут в присутствии окислителя при величине окислительно-восстановительного потенциала, равной 350-450 мВ. После отделения твердой фазы осуществляют ее промывку при Т:Ж=1:5-30. Техническим результатом является обеспечение стабильно высоких показателей извлечения в раствор цветных металлов и железа и получение диоксида кремния, содержащего не более 2,9% суммы металлов и не более 0,6% хлора, а также улучшение условий труда. 6 з.п. ф-лы, 7 пр.
Изобретение относится к гидрометаллургии благородных металлов и может быть использовано для экстракционного извлечения золота(III) из солянокислых растворов от выщелачивания золотосодержащих промпродуктов и концентратов. Экстракцию ведут из солянокислого раствора с концентрацией 1-5 моль/л HCl. В качестве экстрагента в раствор вводят неразбавленный вторичный алифатический спирт нормального строения с числом атомов углерода С7-С12. Экстракцию осуществляют противотоком на 2-4 ступенях при О:В=1:2-20 с переводом в экстракт золота(III), а в рафинат - основной части кислоты и примесных элементов. Процесс ведут при обеспечении в рафинате равновесной концентрации соляной кислоты 1-5 моль/л до остаточного содержания золота в рафинате менее 3 мг/л. Насыщенный экстракт промывают водой или раствором соляной кислоты с концентрацией 0,1-0,5 моль/л на 1-4 ступенях при O:В=3-20:1. После промывки экстракта производят реэкстракцию золота(III) раствором аммиака или раствором тиомочевины с рециклом очищенного экстрагента на стадию экстракции. Техническим результатом является извлечение золота до 99,40-99,99%, уменьшение соэкстракции примесей и сокращение объема материальных потоков. 5 з.п. ф-лы, 8 пр.
Изобретение относится к очистке от марганца хлоридных никелевых растворов, используемых в процессе электролиза никеля. В хлоридном никелевом растворе повышают содержание хлор-иона до 8,2-9,0 М путем введения хлорида никеля с концентрацией 190-210 г/л никеля или соляной кислоты с концентрацией 9-11 М HCl. Затем никелевый раствор обрабатывают экстракционной смесью, содержащей 33-41% триоктиламина в хлоридной или сульфатной форме, 35-60% 2-октанона и инертный разбавитель - «Эскайд-100» или «Шеллсол D-40». Экстракционную обработку ведут на 1-2 ступенях в течение 2-3 минут с извлечением марганца(II) в органическую фазу и получением очищенного хлоридного никелевого раствора. Техническим результатом является очистка хлоридного никелевого раствора до остаточной концентрации марганца(II) 5-8 мг/л при снижении числа ступеней экстракции и длительности процесса. 5 з.п. ф-лы, 7 пр.
Изобретение относится к металлургии. В токе сухого инертного газа производят высокотемпературную обработку хлорида кобальта при температуре 600-700°C с очисткой от примесей. Затем производят водородное восстановление очищенного хлорида кобальта при температуре 600-720°C с образованием металлического кобальта и выделением хлористого водорода, который направляют на улавливание. В качестве инертного газа может быть использован азот или аргон. Улавливание хлористого водорода может быть произведено путем пропускания его через воду с получением раствора соляной кислоты или через водную суспензию, содержащую гидроксид кобальта, с получением раствора хлорида кобальта. Обеспечивается повышение выхода металлического кобальта из хлорида кобальта при обеспечении глубокой очистки от летучих примесей, а также обеспечивается снижение длительности обработки до 5,5 часов и менее. 5 з.п. ф-лы, 1 табл., 6 пр.
Изобретение относится к способам извлечения ванадия из кислых растворов и может быть использовано для экстракционного извлечения ванадия из сернокислых, солянокислых и азотнокислых растворов, образующихся при переработке различных видов ванадийсодержащего сырья и при рафинировании солей ванадия
Изобретение относится к гидрометаллургии и может быть использовано для получения сульфатов металлов из растворов их хлоридов, образующихся при гидрохлоридной переработке природного или вторичного сырья, в частности к способу конверсии хлорида металла в его сульфат

Изобретение относится к способу переработки никелевого штейна

Изобретение относится к гидрометаллургии цветных металлов и может быть использовано для получения солей металлов из хлоридных, сульфатных и нитратных растворов, образующихся при переработке полиметаллического сырья

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении плит и панелей, предназначенных для внутренней и наружной облицовки зданий, напольных покрытий, лестничных ступеней, полов, стяжек под напольные покрытия, а также строительных сухих смесей
Изобретение относится к гидрометаллургии редких элементов и может быть использовано для способа извлечения рения из металлических отходов никельсодержащих жаропрочных сплавов

Изобретение относится к способу переработки остатков синтеза карбонильного никеля, содержащих цветные и платиновые металлы

Изобретение относится к способу переработки железотитанового концентрата
Изобретение относится к способам переработки отходов, в частности к способу извлечения меди из сульфатсодержащей пыли медного производства
Изобретение относится к способу переработки пыли медного производства
Изобретение относится к гидрометаллургии редких элементов и может быть использовано для экстракционного извлечения рения из сернокислых, солянокислых и смешанных кислых сульфатно-хлоридных растворов от выщелачивания рениийсодержащих концентратов и вторичного сырья

Изобретение относится к гидрометаллургии цветных металлов и может быть использовано для разделения кобальта и никеля в хлоридных средах, образующихся при гидрохлоридной переработке природного и вторичного кобальтсодержащего сырья, а также для отделения кобальта от примесных компонентов в виде тяжелых цветных металлов и железа
Изобретение относится к гидрометаллургии осмия и рения, в частности к методам утилизации осмий-ренийсодержащей серной кислоты, образующейся в системе мокрой газоочистки медных и никелевых производств, и может быть использовано для извлечения и концентрирования осмия и рения из промывной серной кислоты

 


Наверх