Патенты автора Соколов Дмитрий Александрович (RU)

Изобретение относится к области измерения физико-химических характеристик газовых сред и касается способа обнаружения зараженности атмосферы токсичными химическими веществами. Способ включает в себя использование инфракрасного спектрометра дистанционного действия и автоматизированного метеокомплекта. Угол обзора прибора химической разведки составляет 180 градусов. Информация о направлении ветра, получаемая с помощью автоматизированного метеокомплекта, поступает на автоматизированное рабочее место оператора и одновременно на устройство согласования, где осуществляется ее обработка и формирование сигнала, который направляется на повторный механизм прибора для корректировки сектора обзора с учетом изменения направления ветра. Технический результат заключается в повышении вероятности своевременного обнаружения облака токсических химических веществ. 1 ил.

Изобретение относится к системам наведения на высокоскоростные и маневрирующие цели, в частности к системам наведения на гиперзвуковые летательные аппараты (ГЗЛА). Система управления обеспечивает перехват цели с высокой точностью, учитывая только ошибки наведения по углу и угловой скорости. С помощью пеленгатора перехватчика или других источников информации формируется измерение пеленга цели, на основе которого в фильтрах формируются оценки требуемых значений угла визирования цели и его производной, а также их текущих значений, которые передаются в усилители, где одновременно формируются сигналы. Сформированные сигналы передаются в сумматор, в котором формируется сигнал управления перехватчика. Сигнал передается на органы управления перехватчика, которые изменяют его пространственное положение. Способ позволит обеспечить более высокую устойчивость и точность перехвата высокоскоростных и маневрирующих целей, в том числе ГЗЛА. 7 ил.

Изобретение относится к нелинейным системам управления угломером, в частности к системам управления пеленгаторами, следящими за интенсивно маневрирующими целями. Достигаемый технический результат – повышение устойчивости и точности сопровождения маневрирующих целей. Указанный результат достигается за счет обеспечения адаптивной чувствительности сигналов управления к ошибкам сопровождения, при этом сигнал управления приводом угломера формируют по определенному закону. 8 ил.

Изобретение относится к системам управления. Способ формирования сигнала управления для сопровождения цели заключается в том, что сигнал управления формируется по закону на основе динамических матриц внутренних связей систем, обобщенного вектора состояния системы и вектора сигналов управления. Сигнал управления состоит из взвешенной суммы фазовых координат и их производных, входящих в сигнал управления с пропорциональными коэффициентами, зависящими от несоответствия динамических свойств динамических матриц внутренних связей систем. Система формирования сигнала управления для инерционного пеленгатора включает измеритель, фильтр, усилитель, сумматор, управляющий элемент. Дополнительно введены усилители с коэффициентами, зависящими от разности матриц и фильтры высоких производных отслеживаемых координат. Значения несоответствия по производным поступают на вход сумматора. Улучшаются показатели эффективности системы. 2 н.п. ф-лы, 6 ил.

Изобретение относится к радиоэлектронным системам сопровождения интенсивно маневрирующих целей, в частности к следящим дальномерам и угломерам бортовых РЛС. Достигаемый технический результат - обеспечение бессрывного сопровождения интенсивно маневрирующих целей с высокоточным оцениванием производных третьего и четвертого порядка при малом числе используемых измерителей. Указанный результат достигается за счет того, что сигнал наблюдений координат состояния подается на вход многоступенчатого фильтра, представляющего собой серию последовательно соединенных фильтров нарастающей размерности (n≥2), каждый из которых формирует оценки, используемые в следующем фильтре в качестве измерений, согласно соответствующему алгоритму. 6 ил.

Изобретение относится к радиоэлектронным системам сопровождения, в частности к следящим системам по направлению (измерителям углов и угловых скоростей линии визирования), в которых используется инерционный привод антенны, и может быть использовано для эффективного управления инерционными следящими системами по направлению в режиме сопровождения различных воздушных объектов, включая интенсивно маневрирующие. Достигаемый технический результат - высокоточное устойчивое сопровождение сверхманевренных целей по направлению при использовании обычных инерционных приводов антенн, без требования изменения конструкции привода антенны. Предлагаемый способ позволяет учесть в законе управления угловую скорость линии визирования, курс носителя и их производные, при этом инерционные свойства привода антенны позволяют обеспечить устойчивое и точное сопровождение интенсивно маневрирующего объекта (ИМО). При этом сигнал управления формируется в системе управления определенным образом. 5 ил.

Изобретение относится к радиоэлектронным системам сопровождения, в частности к следящим системам по направлению (измерителям углов и угловых скоростей линии визирования), в которых используется инерционный привод антенны, и может быть использовано для эффективного управления инерционными следящими системами по направлению в режиме сопровождения различных воздушных объектов, включая интенсивно маневрирующие. Технический результат - повышение точности и устойчивости сопровождения по направлению интенсивно маневрирующих объектов (ИМО). Для этого способ учитывает в законе управления угловую скорость линии визирования, ее первую и вторую производные, а также инерционные свойства привода антенны, при этом в способе в сигнале управления дополнительно учитываются скорость линии визирования, ее первая и вторая производные. 6 ил.

Изобретение относится к области методов контроля качества сталей и сплавов. Технический результат - повышение точности измерений. Способ механического испытания труб включает сплющивание трубного образца между двумя гладкими жесткими параллельными плоскостями с постоянной скоростью, определение степени пластичности и деформации образца сжатием до образования в нем первой трещины. При этом деформацию образца осуществляют с регистрацией закрепленным на образце датчиком акустической эмиссии сигналов акустической эмиссии. Момент образования трещины определяют по резкому увеличению сигнала акустической эмиссии, по которому определяют степень пластичности и запас пластичности образца, как относительное превышение пластичности образца заранее установленного предела. 2 ил.

Изобретение относится к электроизоляционным композициям и может быть использовано при конструировании электрических кабелей для подвижного состава метрополитена и других видов транспорта

Изобретение относится к полимерным композициям и может найти применение в различных областях народного хозяйства, в частности в кабельной промышленности

 


Наверх