Патенты автора Ахметшин Баязетдин Саяхетдинович (RU)

Изобретение относится к нефтегазовой промышленности и может быть использовано для оптимизации периодичности газодинамических исследований (ГДИ) скважин на нефтегазоконденсатных месторождениях Крайнего Севера. Автоматизированная система управления технологическими процессами (АСУ ТП) выдает команду системе телемеханики кустов скважин (СТКС) на проведение испытаний. Получив команду, ее контролируемый пункт (КП) фиксирует на выбранной скважине значения забойного, устьевого и затрубного (если датчик установлен) давления, температуру газа на устье и дебит. Значение забойного давления КП определяют расчетным путем по соответствующей формуле. Затем КП останавливает работу выбранной скважины и заданным шагом дискретизации контролирует давление на устье и/или за колонной до полной его стабилизации. Далее КП во время сеансов связи эту информацию, сформированную в виде пакета, передает через ДП в АСУ ТП, которая на основе этой полученной информации от СТКС формирует кривую восстановления давления КВД скважины и сохраняет ее в своей базе данных (БД). После стабилизации давления по команде, поступивший из АСУ ТП в СТКС, КП осуществляет пуск скважины в работу с минимальным предварительно заданным дебитом Q и регистрирует с заданным шагом дискретизации во времени фактический дебит, устьевое и/или затрубное давление скважины. По окончании этого цикла система переключается на проведение испытаний скважины обратным ходом, с больших дебитов скважин к меньшим. Расчетным путем определяет значения забойного давления рз скважины и коэффициенты фильтрационного сопротивления а и b. Эти параметры система использует для обработки результатов ГДИ на основе уравнения , описывающего приток газа к забою скважины, где рпл - пластовое давление, рз - забойное давление. Когда изменение параметров а, b и рпл после предыдущих испытаний укладывается в рамки допусков утвержденной модели разработки месторождения, на этом процесс ГДИ скважины заканчивается. Технический результат заключается в повышении эффективности способа оптимизации газодинамических исследований скважины, улучшении экологической безопасности.

Изобретение относится к области добычи природного газа и, в частности, к устранению взаимопродавливания скважин, работающих на общий коллектор в реальном масштабе времени. Техническим результатом является повышение точности определения правильности выбора режима работ ГСШ с общим коллектором в реальном масштабе времени. Способ включает назначение режимов его эксплуатации в рамках технологических ограничений, которые определяются расчетным методом по результатам газогидродинамических исследований скважин. При этом в процессе эксплуатации месторождения, используя средства телеметрии и АСУ ТП установки комплексной подготовки газа (УКПГ), с заданным шагом квантования измеряют фактические давления газа на коллекторе каждого куста скважин и в конце газосборного шлейфа (ГСШ), а также расход газа каждого куста скважин, и, используя измеренные данные и паспортные характеристики ГСШ в реальном масштабе времени, вычисляют давление газа в точках подкачки и строят синхронизированные во времени графики пар давлений: измеренного на коллекторе куста и рассчитанного для точки подкачки, к которой он подключен, а также измеренного давления в конце ГСШ и рассчитанного для последней точки подкачки перед УКПГ, и, как только будет выявлено, что разность одной из пар давлений стала меньше заданного порога, значение которого назначают по результатам последних газогидродинамических испытаний скважин и заданному режиму работы УКПГ, оператору УКПГ выдается сообщение о выявлении проблем в работе ГСШ и (или) соответствующего куста газовых скважин, а также рекомендуемый перечень индивидуальной последовательности операций по парированию возникшей ситуации на проблемном участке, и, используя этот перечень, оператор установки принимает окончательное управляющее решение по устранению проблемы. 2 ил.

Изобретение относится к области добычи природного газа, в частности к определению коэффициента фактического гидравлического сопротивления газовых скважин в реальном масштабе времени. Техническим результатом является повышение точности определения коэффициента гидравлического сопротивления λф в стволе газовых скважин и контроль его динамики в реальном масштабе времени. Способ включает измерение во время газогидродинамических исследований скважины глубинными манометрами и термометрами и/или глубинными измерительными комплексами давления Рз.гис и температуры газа TL на забое скважины глубиной L, а также расхода газа (дебит) скважины Qгис, давления Ру.гис и температуры газа Гу.гис на устье скважины с последующим определением коэффициента гидравлического сопротивления по полученным экспериментальным данным аналитическим путем. После окончания газогидродинамических исследований скважины и ввода ее в эксплуатацию, используя телеметрию кустов газовых скважин, производят с заданным шагом дискретизации во времени измерения на устье скважины давления Ру, температуры Ту и расхода газа Q скважины и передают эти значения в автоматизированную систему управления технологическими процессами установки комплексной/предварительной подготовки газа, которая, используя эти значения, определяет текущее значение коэффициента гидравлического сопротивления λф ствола газовой скважины по математической формуле. 1 ил.

Изобретение относится к газовой промышленности и может быть использовано при разработке месторождений природного газа, преимущественно на стадии падающей добычи и на завершающей стадии разработки. Технический результат – повышение эффективности разработки месторождений природного газа. По способу осуществляют выборочную, в период сезонного снижения потребительского спроса на газ, остановку газовых скважин в эксплуатационных зонах, расположенных в сводовой части структуры с пониженным, относительно среднего по залежи, пластовым давлением и наиболее близких к центру депрессионной воронки. Остановку осуществляют на срок, необходимый для компенсации потерь пластового давления за счет притока газа из периферийных зон с продолжительностью, определяемой по результатам предыдущей остановки. Учитывают точку пересечения первой производной по времени функции интенсивности притока газа в эксплуатационную зону остановленных скважин, и первой производной функции интенсивности потенциальной добычи газа, определяемой как первая производная зависимости максимального уровня добычи от величины текущего пластового давления в зоне при заданной постоянной величине давления на входе газового промысла. После остановки осуществляют контроль величины пластового давления в зонах до его стабилизации после пуска скважин в эксплуатацию. При этом количество действующих скважин и технологические режимы их работы подбирают таким образом, чтобы объемы отбираемого газа максимально компенсировались за счет его притока из смежных зон. 1 пр., 1 табл., 5 ил.

Изобретение относится к области добычи природного газа и, в частности, к предупреждению процесса гидратообразования и разрушению гидратов в системах сбора газа в условиях Крайнего Севера. Технический результат - повышение эффективности способа за счет обеспечения возможности подачи ингибитора гидратообразования в необходимое место газосборного шлейфа. В способе управления процессом предупреждения гидратообразования в газосборных шлейфах, подключенных к общему коллектору на газовых и газоконденсатных месторождениях Крайнего Севера, включающем определение начала процесса гидратообразования в шлейфе путем контроля температуры газа, поступающего на вход установки комплексной подготовки газа - УКПГ из шлейфа, и сравнения динамики ее поведения с динамикой расчетного значения этой температуры, а также подачу ингибитора на кусты скважин по отдельному трубопроводу, согласно изобретению в базу данных АСУ технологического процесса - АСУ ТП УКПГ регулярно вводят значения максимального возможного давления на устье каждой скважины, которое определяют по результатам газогидродинамических исследований скважин, а с использованием телеметрии производят непрерывное или с заданным шагом квантования измерение базовых параметров кустов скважин, их шлейфов и газосборного коллектора и для каждой скважины строят график временной функции по результатам контроля значений давления газа на их устье и, как только с помощью АСУ ТП УКПГ обнаруживают начало процесса гидратообразования в газосборном шлейфе, сопровождаемом повышением давления на всех скважинах, подают ингибитор либо на куст скважин, либо в точку подачи ингибитора с меньшим расстоянием от УКПГ, а если давление повышается на отдельных скважинах, с помощью АСУ ТП переходят в режим анализа изменения давления на устье каждой из скважин и выявляют, на какой из них давление повышается и приближается к своему максимально возможному значению на устье, и по этому параметру определяют, на каком участке системы «шлейф - газосборный коллектор» происходит образование гидратов, после чего подают ингибитор на ту скважину, которая расположена непосредственно перед участком, в котором начался процесс гидратообразования. 2 ил.

Изобретение относится к области добычи природного газа и, в частности, к определению коэффициента фактического гидравлического сопротивления газосборного шлейфа. Автоматизированная система управления технологическими процессами газового промысла в реальном масштабе времени контролирует значение коэффициента эффективности эксплуатации газопромыслового шлейфа Е по паспортным параметрам шлейфа, данным по его эксплуатации и контролируемым технологическим параметрам. Если значение коэффициента Е вышло за допустимые границы, то констатируют: нормальный режим работы скважин и шлейфа нарушены (в шлейфе кроме газа присутствует выше допустимой нормы иной фактор: газовый гидрат, пластовая вода, механические примеси). Способ позволяет оперативно выявлять потенциальную возможность отказа газосборного шлейфа.
Изобретение относится к области добычи природного газа и, в частности, к предупреждению гидратообразования и разрушению гидратов в системах сбора газа - газосборных шлейфах газовых и газоконденсатных месторождений Крайнего Севера. Технический результат - повышение качества эксплуатации газового промысла за счет снижения расхода ингибитора гидратообразования и снижения себестоимости добываемого и подготавливаемого к транспорту газа. По способу определяют начало процесса гидратообразования в шлейфе путем измерения температуры газа, поступающего на вход установки комплексной подготовки газа - УКПГ из шлейфа. Сравнивают динамику поведения температуры газа с динамикой расчетного значения этой температуры. При этом начало процесса гидратообразования в газосборном шлейфе определяют с помощью автоматической системы управления технологическим процессом УКПГ - АСУ ТП УКПГ. С помощью этой же системы снижают давление газа на выходе шлейфа в рамках технологических ограничений. Одновременно измеряют температуру газа на выходе газосборного шлейфа. При снижении этой температуры в упомянутый шлейф подают ингибитор гидратообразования. Если при этом продолжается снижение температуры газа, то газосборный шлейф продувают. При стабилизации или повышении температуры газа на выходе газосборного шлейфа ингибитор гидратообразования в этот шлейф не подают.

Изобретение относится к области добычи природного газа, в частности к ведению процесса осушки газа с использованием автоматизированных систем управления технологическими процессами (АСУ ТП) установок комплексной подготовки газа (УКПГ) газоконденсатных месторождений Крайнего Севера (газодобывающих комплексов). Осуществляют контроль средствами АСУ ТП расхода газа по каждой i-й технологической нитке газодобывающего комплекса, его сравнение с предельно допустимыми значениями и автоматическое поддержание расхода с соблюдением условия . Оценивают гидравлические сопротивления абсорберов каждой технологической линии подготовки газа, и те абсорберы, которые только что прошли ревизию, и их работоспособность восстановлена в полном объеме, эксплуатируют в режиме максимальной производительности, а те абсорберы, которые находятся в эксплуатации достаточно длительное время, эксплуатируют в щадящем режиме, для чего АСУ ТП определяет значение поправки на производительность каждого абсорбера AQ; с учетом параметров, которые невозможно и/или нецелесообразно измерять, и использует эту поправку для задания и поддержания производительности i-го абсорбера на уровне, вычисляемом по формуле Qрезул. i=Qi-ΔQi, где Qi - расчетное значение необходимой производительности i-й технологической нитки, при этом АСУ ТП следит за выполнением условия, чтобы общая производительность газодобывающего комплекса была равна заданной центральной диспетчерской службой для газодобывающего комплекса. Способ обеспечивает заданную степень осушки газа при минимальных энергетических и материальных затратах и соблюдении всех ограничений на технологические параметры процесса с помощью АСУ ТП и ведет к снижению численности персонала, занятого в обслуживании газодобывающего комплекса. 1 з.п. ф-лы, 3 ил.

Изобретение относится к оперативному контролю выноса воды и песка из скважины в автоматизированных системах управления технологическими процессами (АСУ ТП) нефтегазоконденсатных месторождений Крайнего Севера

Изобретение относится к области добычи природного газа и, в частности, к предупреждению гидратообразования и разрушению гидратов в системах сбора газа в условиях Крайнего Севера

Изобретение относится к аппаратам для проведения массообменных процессов в системах газ (пар) - жидкость, в частности к абсорбционным и ректификационным колоннам, и может быть использовано в газовой, химической и нефтеперерабатывающей промышленности

 


Наверх