Патенты автора Королев Альберт Викторович (RU)

Изобретение относится к релаксации остаточных напряжений. Осуществляют обкатку детали вокруг ее оси и деформирование ее роликами. Деформирование детали осуществляют с начальной деформацией u0: и максимальной деформацией um: где l - длина детали, мм; W - момент сопротивления изгибу, мм; Е - модуль упругости материала детали, МПа; J - момент инерции поперечного сечения детали относительно центральной оси, σT - передел текучести материала детали, МПа; σo - напряжение изгиба, равное σo=0,5 σT, МПа. В результате повышается качество обработки деталей и повышается производительность. 1 ил., 1 пр.

Изобретение относится к машиностроению, а именно к накатке поверхностей дорожек качения колец упорно-радиальных шариковых подшипников в собранном виде с целью их упрочнения. Способ заключается во вращении подшипника под нагрузкой. Число шариков в процессе обработки устанавливают меньшим числа шариков в шарикоподшипнике, твердость шариков берут выше твердости материала колец подшипника. Силу воздействия на подшипник устанавливают такой, чтобы в процессе обработки шарики осуществляли пластическую деформацию дорожки качения. Число шариков в процессе обработки устанавливают равным трем, один из диаметров шариков берут равным номинальному диаметру шариков в шарикоподшипнике, а диаметры двух других шариков определяют из соотношений. Технический результат заключается в повышении качества обработки. 2 ил.

Изобретение относится к разрушающему контролю и может быть использовано для определения точек контакта шарика с дорожками качения колец шарикоподшипника и последующему вычислению угла контакта шарикоподшипника. Способ включает определение точки касания шарика с контактной поверхностью дорожек качения и вычисление угла контакта шарикоподшипника по результатам измерения. Точки контакта шариков с дорожками качения определяют путем создания осевой нагрузки на подшипник, при которой на дорожках качения остается остаточная деформация от контакта с шариками. Затем замеряют диаметр расположения отпечатков шариков на каждом из колец и вычисляют угол контакта по формуле. Техническим результатом является повышение точности измерения угла контакта. 2 ил., 2 табл.

Изобретение относится к холодной обработке металлов давлением, а именно к правке длинномерных цилиндрических деталей. Детали придают вращение и прикладывают к ней внешнюю нагрузку, вызывающую в ней пластическую деформацию. Один конец детали закрепляют в патроне станка и придают детали многоцикловое равномерное вращение вокруг ее оси, к другому концу прикладывают внешнюю нагрузку в виде изгибающего момента. Улучшаются геометрические размеры детали за счет устранения остаточных напряжений вдоль оси детали. 1 ил., 1 пр.

Изобретение относится к холодной обработке металлов давлением, а именно к устройствам для правки длинномерных цилиндрических деталей. Устройство содержит привод вращения детали и механизм, осуществляющий пластический знакопеременный изгиб детали в поперечном направлении. Механизм знакопеременного изгиба детали состоит из втулки с отверстием для размещения конца детали. Втулка установлена в подшипнике качения в корпусе рычага, закрепленного в державке на оси, перпендикулярной оси втулки, и осуществляющего поворот втулки вокруг оси державки под действием прикладываемого к нему усилия от винтового прижима. Державка установлена в неподвижном корпусе с возможностью свободного перемещения в направлении, перпендикулярном оси поворота втулки. Повышается качество деталей за счет устранения остаточных напряжений вдоль оси детали. 2 ил., 1 пр.

Изобретение относится к области машиностроения, а именно к очистке от технологических загрязнений поверхностей деталей вращения типа колец подшипников, осей, валов, втулок, зубчатых колес и др. Способ заключается в том, что деталь помещают в цилиндрическую камеру, в которую с напором подают очищающую среду, а деталь приводят во вращательное движение. Детали дополнительно сообщают осциллирующие колебания вдоль ее оси, обеспечивающие периодическое разряжение и сжатие очищающей среды. Подачу очищающей среды осуществляют через по меньшей мере одну щель, выполненную в торце камеры под острым углом, в направлении, противоположном направлению вращения детали. Зазор между торцом детали и торцом камеры устанавливают равным: h=(1,5-3)⋅A, где А - амплитуда осциллирующих колебаний, мм. Зазор между наружной поверхностью и внутренней поверхностью камеры должен быть достаточным, чтобы в зоне действия потока очищающей среды не создавалось избыточное давление, существенно снижающее скорость потока. Технический результат заключается в повышении интенсивности и качества очистки. 2 ил.

Изобретение относится к области машиностроения, а именно к очистке от технологических загрязнений и сушке поверхностей деталей вращения типа колец подшипников, осей, валов, втулок, зубчатых колес и др. Способ очистки и сушки деталей вращения, при котором детали придают вращение и направляют на ее поверхность поток сжатого воздуха. Частоту вращения детали устанавливают достаточной для удаления мелких частиц и влаги под действием центробежной силы с очищаемой поверхности и определяют по формуле: . Время очистки и сушки определяют в соответствии с зависимостью: где n - частота вращения детали, об/с; λ - коэффициент трения загрязнений относительно обрабатываемой поверхности; g - ускорение свободного падения, мм/с2; d - диаметр очищаемой поверхности, мм, τ - потребное время обработки, с; wν - удельная энергия недиссоциативной адсорбции молекул жидкости на очищаемой поверхности, Дж/кг. Сопло, с помощью которого осуществляют подачу сжатого воздуха в направлении, противоположном направлению вращения детали, устанавливают под углом к очищаемой поверхности, оказывающим максимальное воздействие на очистку поверхности. Технический результат: повышение качества очистки и сушки поверхности тел вращения, обеспечение более равномерной очистки поверхности, повышение производительности обработки за счет высокой интенсивности очистки, упрощение возможности практической реализации способа. 1 ил.

Изобретение относится к области машиностроения, в частности к способам селективной сборки подшипников качения, например радиально-упорных, упорно-радиальных однорядных и двухрядных, и может быть использовано в подшипниковой промышленности. Способ включает измерение диаметров дорожек качения наружных и внутренних колец под углом контакта под действием осевой нагрузки. В качестве осевой нагрузки используют нагрузку на шарики, равную , при этом диаметр шариков при комплектовании определяют из соотношения , а угол контакта при измерении диаметров дорожек качения определяют как , где- нагрузка, при которой осуществляют измерение диаметров дорожек качения, Н; - число шариков, которыми осуществляют измерение диаметров дорожек качения; z - число шариков в собранном шарикоподшипнике; - номинальный угол контакта в подшипнике, обеспечиваемый в процессе комплектования, рад.; Kr - максимальное значение отношения радиальной R и осевой А рабочих нагрузок на подшипник в процессе эксплуатации;- диаметр комплектовочных шариков, мм;и- максимально и минимально допустимые радиусы профиля дорожек качения, мм. Технический результат: повышение грузоподъемности подшипника качения при упрощении процесса комплектования. 3 ил., 1 табл., 1 пр.

Изобретение относится к машиностроению, а именно к устройствам для очистки от технологических загрязнений и сушки поверхностей деталей вращения типа колец подшипников, осей, валов, втулок, зубчатых колес. Устройство имеет механизм загрузки изделий и механизм для придания изделию вращения с возможностью его очистки под действием центробежных сил. Механизм загрузки выполнен в виде накопителя, представляющего собой полый цилиндр с возможностью поштучной загрузки в него изделий, и толкателя, подающего поштучно изделия из нижней части накопителя в рабочую зону. Механизм вращения выполнен в виде оправки для установки очищаемого изделия и двигателя вращения, кинематически связанного с оправкой. Устройство дополнительно имеет механизм установки изделия на оправку, состоящий из круглой пластины с воздухораспределительным каналом и соплами для направления с высоким воздушным напором сжатого воздуха на очищаемую поверхность, и подпружиненного выталкивателя с возможностью смещения установленного на нем изделия под напором сжатого воздуха на оправку. Технический результат: удаление с поверхности изделия не только влаги, но и технологических загрязнений, повышение качества очистки, обеспечение сушки изделия. 1 пр., 3 ил.

Изобретение относится к ультразвуковой обработке круглой пластины. Закрепляют пластину на опоре по ее краю, устанавливают источник ультразвуковых колебаний на пластине и осуществляют ее деформирование. При этом источник ультразвуковых колебаний устанавливают в центре поверхности пластины и сообщают ему ультразвуковые колебания и статическое усилие. Деформирование пластины осуществляют на величину δ, равную где R и r - соответственно наружный и внутренний радиусы пластины, мм; t - толщина пластины, мм; Е - модуль упругости материала пластины, МПа; μ - коэффициент Пуассона материала пластины; [σt] - предел текучести материала пластины, МПа. В результате исключаются искажения геометрической формы пластины и повышается качество обработки. 2 ил.

Изобретение относится к машиностроению, а именно к железнодорожному и другим видам транспорта. Подшипник содержит ролики, наружное и внутреннее кольца с тороидальными дорожками качения. Ось симметрии профиля дорожек качения расположена относительно плоскости симметрии подшипника под углом контакта, близким к углу действия на подшипник результирующей нагрузки. Дорожки качения имеют круговой профиль с радиусом, а диаметры бортов наружных колец определяют из соотношения Db≥Dd⋅(1-α⋅Δt), где R - радиус профиля дорожек качения, мм; Ld - длина рабочей части дорожек качения, мм; β - угол наклона оси симметрии профиля дорожек качения относительно плоскости симметрии подшипника, рад.; Db - диаметр борта подшипника, мм; Dd - диаметр дорожек качения наружного кольца, мм; α - коэффициент линейного расширения материала наружного кольца, 10-6/°С; Δt - допустимая температура нагрева наружного кольца. Технический результат: повышение грузоподъемности подшипника, обеспечивается надежная работа подшипника, уменьшение габаритных размеров подшипника и упрощение его конструкции. 1 ил., 1 пр.

Изобретение относится к правке упругопластическим изгибом длинномерных деталей. Осуществляют предварительное упругое деформирование детали. Осуществляют правку детали с одновременным поверхностным пластическим деформированием рабочим инструментом, перемещающимся вдоль образующей вращающейся вокруг своей центральной оси детали и обеспечивающим воздействие на поверхность детали с двух противоположных сторон с равными силами. Причем силы приложены на расстоянии: , где σt - предел текучести материала детали, МПа, W - момент сопротивления детали, мм3, Р - сила прижима рабочего инструмента к детали, Н. В результате устраняются остаточные напряжения в детали и обеспечивается упрочнение поверхностного слоя детали. 1 ил., 1 пр.

Изобретение относится к области раскатки дорожек качения колец шариковых подшипников. Установка содержит шариковую оправку с деформирующими элементами в виде шариков, механизм нагружения и механизм для установки и вращения заготовки. В механизме нагружения установлен электронный динамометр. Между механизмом нагружения и шариковой оправкой установлен компенсатор перекоса осей шариковой оправки и заготовки в виде эластичной прокладки или шарнирного подшипника. В качестве шариковой оправки служит противоположное верхнее кольцо шарикового подшипника. В механизме для установки и вращения заготовки в качестве опоры установлен подшипник качения. Деформирующие шарики имеют диаметр, равный диаметру шариков подшипника качения. В результате повышается качество подшипника. 1 ил, 1 пр.

Изобретение относится к правке деталей. Осуществляют вращение детали и воздействуют на нее деформирующим инструментом, вызывающим в ней пластическую деформацию. Отвод деформирующего инструмента после деформации детали осуществляют постепенно с подачей S≤(0,01-0,05)Δ, в течение времени где S - подача деформирующего инструмента, мм/об, Δ - максимальная деформация детали в процессе правки, мм, n - частота вращения детали, об/мин, k - безразмерный коэффициент пластической деформации, k>1. В результате повышается качество правки деталей. 1 ил., 1 пр.

Изобретение относится к бесцентровым станкам для обкатки кольцевых деталей. Станок содержит станину, узел загрузки, три рабочих валка со скрещивающимися осями, привод вращения валков, механизм прижима валков к обрабатываемым кольцевым деталям, узел регулировки угла скрещивания осей валков. Узел регулировки угла скрещивания осей валков выполнен в виде двух дисков. Рабочие валки выполнены с неподвижными осями. Два рабочих валка являются нижними и выполнены с возможностью вращение от привода, а положение оси третьего валка, являющегося верхним, регулируется в зависимости от диаметра обрабатываемых кольцевых деталей ограничителем радиального перемещения. Узел загрузки выполнен в виде лотка, наклонного к горизонтальной плоскости. В результате упрощается конструкция бесцентрового станка. 2 ил., 1 пр.

Изобретение относится к обкатке кольцевых деталей. Устройство содержит станину с размещенными на ней двумя опорными и деформирующим валками, механизм вращения обрабатываемой детали и механизм нагружения. Оси опорных валков установлены на станине неподвижно. Один опорный валок соединен с приводом вращения. Деформирующий валок установлен с возможностью поворота его оси вокруг неподвижной оси, закрепленной на станине с помощью динамометров. Механизм нагружения выполнен в виде винтового механизма, выполненного с возможностью прижатия деформирующего валка к детали с силой, фиксируемой упомянутыми динамометрами. В результате упрощается конструкция устройства и уменьшаются отклонения геоментрических размеров обработанной детали. 2 ил., 1 пр.

Изобретение относится к бесцентровым станкам для обкатки кольцевых деталей. Станок содержит станину, узел загрузки, три рабочих валка со скрещивающимися осями, привод вращения валков, механизм прижима валков к обрабатываемым кольцевым деталям, узел регулировки угла скрещивания осей валков. Узел регулировки угла скрещивания осей валков выполнен в виде двух дисков. Рабочие валки выполнены с неподвижными осями. Два рабочих валка являются нижними и выполнены с возможностью вращение от привода, а положение оси третьего валка, являющегося верхним, регулируется в зависимости от диаметра обрабатываемых кольцевых деталей ограничителем радиального перемещения. Узел загрузки выполнен в виде лотка, наклонного к горизонтальной плоскости. В результате упрощается конструкция бесцентрового станка. 2 ил., 1 пр.

Изобретение относится к обкатке кольцевых деталей. Устройство содержит станину с размещенными на ней двумя опорными и деформирующим валками, механизм вращения обрабатываемой детали и механизм нагружения. Оси опорных валков установлены на станине неподвижно. Один опорный валок соединен с приводом вращения. Деформирующий валок установлен с возможностью поворота его оси вокруг неподвижной оси, закрепленной на станине с помощью динамометров. Механизм нагружения выполнен в виде винтового механизма, выполненного с возможностью прижатия деформирующего валка к детали с силой, фиксируемой упомянутыми динамометрами. В результате упрощается конструкция устройства и уменьшаются отклонения геоментрических размеров обработанной детали. 2 ил., 1 пр.

Подшипник // 2604907
Изобретение относится к машиностроению, а именно к опорам качения и скольжения различных механизмов и машин, а также к отдельным деталям машин - валикам, роликам, втулкам, осям и другим деталям. Подшипник содержит детали, изготовленные из металлического малоразмерного проката в виде многослойной упрочненной металлической ленты или металлической проволоки. Малоразмерный металлический прокат выполнен из аморфного металла или аморфного металлического сплава толщиной 0,02-0,08 мм и уложен по профилю рабочей поверхности с натягом σ = ( 0,2 − 0,4 ) σ t , где σ - напряжение растяжения, МПа; σ t - предел упругости материала малоразмерного проката, МПа. Технический результат: создание подшипника, характеризующегося повышенной работоспособностью и более высокой технологичностью. 1 ил., 1 пр.

Изобретение относится к холодной обработке металлов давлением, а точнее, к способам и устройствам для правки. К заготовке прикладывают радиальную нагрузку, концы детали закрепляют шарнирно, радиальную нагрузку создают двумя роликами путем поперечной деформации вала на определенную расчетной формулой величину. При этом ролики располагают симметрично относительно центра детали, а детали придают вращение вокруг оси до выравнивания напряжений по ее сечению. Повышается качество детали за счет устранения остаточных напряжений. 1 ил.

Изобретение относится к обработке кольцевой детали обкаткой. Устанавливают деталь между тремя валками, с помощью которых обеспечивают деформацию детали и ее непрерывную обкатку между ними. Максимальную величину деформации детали определяют из равенства: где D - диаметр наружной поверхности детали, W - момент сопротивления изгибу, [σt] - предел текучести материала детали, Ε - модуль упругости материала детали, J - осевой момент инерции поперечного сечения детали, kp - коэффициент допустимой погрешности (kp=(1,4-1,7)), F - площадь поперечного сечения детали. В результате повышается производительность обработки и расширяются технологические возможности. 1 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к обработке дорожек качения колец шарикоподшипников. Осуществляют вращение кольца шарикоподшипника и прижатие к дорожке его качения шарикового раскатного инструмента. Ось шарикового раскатного инструмента совмещают с осью вращения кольца шарикоподшипника. Используют шариковый раскатный инструмент, содержащий оправку с конической поверхностью и шарики, которые свободно катятся по упомянутой конической поверхности оправки, угол которой совпадает с углом контакта шариков и дорожки качения кольца собранного шарикоподшипника. Диаметр шариков раскатного инструмента равен диаметру шариков в обрабатываемом шарикоподшипнике. В результате уменьшается износ шарикового раскатного инструмента. 2 ил.

Изобретение относится к холодной обработке металлов давлением, а точнее к способам и устройствам для правки и стабилизации размеров длинномерных цилиндрических деталей. К заготовке прикладывают радиальную нагрузку, концы детали закрепляют шарнирно, радиальную нагрузку создают роликом, который располагают в месте наибольшего изгиба оси детали, а детали придают вращение вокруг оси. Повышается качество стабилизации геометрических параметров за счет устранения остаточных напряжений. 1ил.

Изобретение относится к машиностроению и может быть использовано для поверхностного упрочнения и стабилизации торсионных валов при обработке источниками с высокой концентрацией энергии. Способ поверхностного упрочнения торсионных валов включает изменение уровня лазерного теплового воздействия на обрабатываемую поверхность за счет установки требуемого температурного уровня нагрева поверхности и обеспечения необходимой скорости υ, м/с, перемещения обрабатываемой поверхности, которую определяют по формуле: а шаг l, м, перемещения поверхности в поперечном направлении устанавливают равным: l≤0,8·Dpp, где Dpr и Dpp - размеры зоны нагрева обрабатываемой поверхности при однократной лазерной вспышке, соответственно вдоль ее перемещения и в поперечном направлениях, м; λ - время между двумя последовательными лазерными вспышками, с; k=0,2-0,5 - коэффициент перекрытия зоны нагрева при двух последовательных лазерных вспышках, определяемый в зависимости от уровня лазерного теплового воздействия и от требуемого температурного уровня нагрева обрабатываемой поверхности. Технический результат заключается в повышении качества обработанной поверхности за счет предотвращения образования высоких закалочных напряжений. 2 ил.

Изобретение относится к машиностроению, а именно к стабилизации геометрических параметров подшипников качения приработкой в собранном виде. Способ заключается во вращении подшипника под нагрузкой, при этом внешнюю нагрузку направляют к оси подшипника под углом не более 12 градусов, число шариков в процессе обработки устанавливают равным 4-6, в качестве шариков используют шарики из материала с твердостью на 8-12 единиц HRC выше твердости материала колец подшипника, а силу воздействия на подшипник устанавливают такой, чтобы в процессе приработки шарики осуществляли пластическую деформацию дорожки качения. Технический результат заключается в снижении контактных напряжений и повышении работоспособности подшипника. 1 ил.

Изобретение относится к машиностроению, а именно к стабилизации геометрических параметров подшипников качения приработкой в собранном виде. Способ заключается во вращении колец подшипника под внешней осевой нагрузкой, внешнюю нагрузку устанавливают равной Р=k Со, а частоту вращения подшипника устанавливают не более 200 об/мин, где Со - осевая статическая грузоподъемность подшипника; k - коэффициент надежности (k=0,8-0,9). Технический результат заключается в увеличении контактных напряжений и повышении интенсивности проработки. 1 ил.

Изобретение относится к машиностроению и может быть использовано в различных механизмах и машинах, в частности в шариковых подшипниках качения. Шариковый подшипник состоит из колец, на дорожках качения которых выполнены канавки, и расположенных между ними шариков. Канавки расположены вдоль окружности контакта шариков и дорожек качения, имеют круговой профиль с радиусом, равным радиусу шариков, а ширина канавок равна b=(0,1-0,4)·dS, где dS - диаметр шариков. Технический результат: обеспечение рациональной геометрии контакта в подшипнике и, как следствие, снижение нагрузок на шарики и повышение работоспособности подшипника. 1 ил., 1пр.

Изобретение относится к машиностроению, а именно к упорно-радиальным подшипникам, преимущественно используемым в верхней опоре передних стоек автомобилей. Подшипник содержит верхний и нижний пластмассовые кожухи, образующие по внутреннему и наружному диаметрам защитные соединения, с закрепленными в них металлическими кольцами, между которыми размещены шарики. Защитное соединение выполнено в виде маложесткого изгиба дугообразной или V-образной формы профиля одного из кожухов, маложесткий изгиб сопряжен с цилиндрической или конической маложесткой ответной частью другого кожуха с натягом, равным ∆=(0,1…0,2)+ε, где ε - величина взаимного радиального биения защитной части кожухов. Технический результат: устранение возможности попадания в рабочую полость подшипника внешних загрязнений и влаги и предотвращение вытекания из подшипника смазки. 1 ил.

Изобретение относится к машиностроению, а именно к чистовой упрочняющей безабразивной обработке поверхностей деталей из конструкционных сталей. На поверхности дорожки качения подшипника размещают порошок графита или дисульфида молибдена и через слой порошка к поверхности вращающейся детали прижимают индентор, совершающий ультразвуковые механические колебания. Индентор имеет сферическую рабочую поверхность и радиус, равный минимальному значению радиуса профиля дорожки качения. Минимальную силу воздействия индентора на обрабатываемую поверхность устанавливают из условия возникновения контакта индентора по всему профилю обрабатываемой поверхности. Обеспечивается возможность обработки фасонной поверхности, повышение качества покрытия и исправление геометрического профиля. 3 ил.

Изобретение относится к машиностроению и может быть использовано для чистовой обработки деталей типа колец высокоточных подшипников. Устройство содержит станину, смонтированную на ней с возможностью возвратно-поступательного перемещения вдоль оси шпинделя изделия инструментальную головку. В пиноли головки размещен соосно со шпинделем изделия инструментальный шпиндель, несущий многобрусковый патрон, расположенный под углом к оси шпинделя изделия. Многобрусковый патрон установлен в инструментальном шпинделе в подшипниках качения, ось вращения которых пересекается с осью инструментального шпинделя в точке симметрии обрабатываемой поверхности изделия. Многобрусковый патрон удерживается от вращения неподвижным упором. В результате повышается производительность и качество обрабатываемых изделий. 1 ил., 1 пр.

Изобретение относится к области машиностроения, а именно к конструкциям и способам изготовления подшипников качения, в частности радиальных и упорных шарикоподшипников. Способ повышения маслоемкости радиального или упорного шарикоподшипника заключается в том, что на тороидальных дорожках его колец создают регулярный микрорельеф, полученный виброобкатыванием или виброрезанием, при котором инструменту сообщают движения подачи и осцилляции по криволинейной поверхности тора. Регулярный микрорельеф создают в виде дискретных серповидных микролунок при вращении кольца и осцилляции инструмента вдоль оси у радиального шарикоподшипника или перпендикулярно оси у упорного шарикоподшипника при отсутствии движения подачи, при этом инструмент устанавливают в среднем положении его осцилляции до соприкосновения с поверхностью беговой тороидальной дорожки кольца. При создании полностью регулярного микрорельефа инструмент углубляют в поверхность тороидальной дорожки кольца в среднем положении его осцилляции, а при обработке выполняют условие i ≥ π d / 2 2 r h , где i - число циклов осцилляции резца за один оборот кольца, d - диаметр беговой тороидальной дорожки кольца в среднем сечении, r - радиус вершины резца или деформирующего наконечника, h - величина углубления инструмента. Технический результат: упрощение технологии изготовления маслоемких радиальных и упорных шарикоподшипников и повышение их эксплуатационных свойств. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области машиностроения, а именно к конструкциям и способам изготовления подшипников качения, в частности радиальных и упорных шарикоподшипников. Способ повышения маслоемкости радиального или упорного шарикоподшипника заключается в том, что на тороидальных дорожках его колец создают регулярный микрорельеф, полученный виброобкатыванием или виброрезанием, при котором инструменту сообщают движения подачи и осцилляции по криволинейной поверхности тора. Регулярный микрорельеф создают в виде дискретных серповидных микролунок при вращении кольца и осцилляции инструмента вдоль оси у радиального шарикоподшипника или перпендикулярно оси у упорного шарикоподшипника при отсутствии движения подачи, при этом инструмент устанавливают в среднем положении его осцилляции до соприкосновения с поверхностью беговой тороидальной дорожки кольца. При создании полностью регулярного микрорельефа инструмент углубляют в поверхность тороидальной дорожки кольца в среднем положении его осцилляции, а при обработке выполняют условие i ≥ π d / 2 2 r h , где i - число циклов осцилляции резца за один оборот кольца, d - диаметр беговой тороидальной дорожки кольца в среднем сечении, r - радиус вершины резца или деформирующего наконечника, h - величина углубления инструмента. Технический результат: упрощение технологии изготовления маслоемких радиальных и упорных шарикоподшипников и повышение их эксплуатационных свойств. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области машиностроения, а именно к конструкциям и способам изготовления подшипников качения, в частности радиальных и упорных шарикоподшипников. Способ повышения маслоемкости радиального или упорного шарикоподшипника заключается в том, что на тороидальных дорожках его колец создают регулярный микрорельеф, полученный виброобкатыванием или виброрезанием, при котором инструменту сообщают движения подачи и осцилляции по криволинейной поверхности тора. Регулярный микрорельеф создают в виде дискретных серповидных микролунок при вращении кольца и осцилляции инструмента вдоль оси у радиального шарикоподшипника или перпендикулярно оси у упорного шарикоподшипника при отсутствии движения подачи, при этом инструмент устанавливают в среднем положении его осцилляции до соприкосновения с поверхностью беговой тороидальной дорожки кольца. При создании полностью регулярного микрорельефа инструмент углубляют в поверхность тороидальной дорожки кольца в среднем положении его осцилляции, а при обработке выполняют условие i ≥ π d / 2 2 r h , где i - число циклов осцилляции резца за один оборот кольца, d - диаметр беговой тороидальной дорожки кольца в среднем сечении, r - радиус вершины резца или деформирующего наконечника, h - величина углубления инструмента. Технический результат: упрощение технологии изготовления маслоемких радиальных и упорных шарикоподшипников и повышение их эксплуатационных свойств. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области машиностроения, а именно к конструкциям и способам изготовления подшипников качения, в частности радиальных и упорных шарикоподшипников. Способ повышения маслоемкости радиального или упорного шарикоподшипника заключается в том, что на тороидальных дорожках его колец создают регулярный микрорельеф, полученный виброобкатыванием или виброрезанием, при котором инструменту сообщают движения подачи и осцилляции по криволинейной поверхности тора. Регулярный микрорельеф создают в виде дискретных серповидных микролунок при вращении кольца и осцилляции инструмента вдоль оси у радиального шарикоподшипника или перпендикулярно оси у упорного шарикоподшипника при отсутствии движения подачи, при этом инструмент устанавливают в среднем положении его осцилляции до соприкосновения с поверхностью беговой тороидальной дорожки кольца. При создании полностью регулярного микрорельефа инструмент углубляют в поверхность тороидальной дорожки кольца в среднем положении его осцилляции, а при обработке выполняют условие i ≥ π d / 2 2 r h , где i - число циклов осцилляции резца за один оборот кольца, d - диаметр беговой тороидальной дорожки кольца в среднем сечении, r - радиус вершины резца или деформирующего наконечника, h - величина углубления инструмента. Технический результат: упрощение технологии изготовления маслоемких радиальных и упорных шарикоподшипников и повышение их эксплуатационных свойств. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области механической обработки и может быть использовано на операциях шлифования фасонных торцовых поверхностей

Изобретение относится к области механической обработки металлов и предназначено для использования при растачивании цилиндрических отверстий деталей на станках токарной группы

Изобретение относится к машиностроению и может быть использовано в различных механизмах и машинах, в частности в верхней опоре передней подвески легковых автомобилей

Изобретение относится к машиностроению и приборостроению, а именно к технологическим операциям релаксации остаточных напряжений в деталях, имеющих внутренний и внешний диаметры

Изобретение относится к машиностроению и приборостроению, а именно к технологическим операциям релаксации остаточных напряжений в деталях

Изобретение относится к области машиностроения, а в частности к способам изготовления колец подшипников из металлической ленты

Изобретение относится к машиностроению, а именно к изготовлению деталей вращения типа колец, втулок, роликов, валиков в условиях безотходного и малоотходного производства

Изобретение относится к обработке металлов давлением, точнее к способам изготовления втулок с буртиком из трубчатой заготовки

Изобретение относится к машиностроению, а именно к технологическим операциям комплектования изделий типа подшипников качения, шариковых винтовых передач и др

Изобретение относится к машиностроению, а именно к опорам качения и скольжения различных механизмов и машин, а также к отдельным деталям машин - валикам, роликам, втулкам, осям и другим деталям

Изобретение относится к области машиностроения и может быть использовано на операциях чистовой обработки деталей типа шатунных и коренных шеек коленчатых валов, колец высокоточных подшипников

Изобретение относится к гидро- и ветроэнергетике, в частности к устройствам для преобразования энергии текущей среды, например рек, приливно-отливных и др

Изобретение относится к области машиностроения и может быть использовано при абразивной обработке деталей типа колец высокоточных подшипников

Изобретение относится к машиностроению, а именно к технологическим операциям сборки изделий, в частности к способам сборки радиально-упорных шариковых подшипников, и может быть использовано в подшипниковом производстве

Изобретение относится к области машиностроения, а именно к технологическим операциям получения штучных заготовок из проката

Изобретение относится к области машиностроения
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх