Патенты автора Гуревич Леонид Моисеевич (RU)

Изобретение относится к технологии термофрикционной резки дисковой пилой нагретого до температуры 1150-1250°С трубопроката из аустенитных хромоникелевых сталей и может быть использовано, например, в трубопрокатном производстве. Способ термофрикционной резки дисковой пилой нагретого до температуры 1150-1250°С трубопроката диаметром 120-200 мм из аустенитной хромоникелевой стали включает разделение нагретой стальной трубы дисковой пилой для термофрикционной резки из низколегированной стали, содержащей цельнометаллический корпус с расположенными по контуру клиновидными режущими зубьями, каждый из которых содержит передний отрицательный угол, равный -20°, угол между боковыми поверхностями зуба, равный 40°, положительный задний угол α, а также боковой угол скоса зуба пилы ϕ. Осуществляют процесс термофрикционной резки нагретого трубопроката из аустенитной хромоникелевой стали диаметром 120 мм дисковой пилой с одинаковыми углами заточки каждого ее зуба α и ϕ, равными 10°, для больших диаметров разрезаемых стальных труб из предлагаемого диапазона задний угол определяют по формуле: α=αо-k1⋅ΔD, а боковой угол скоса зуба пилы ϕ - по формуле: ϕ=ϕо-k2⋅ΔD, где αо=ϕо=10°, коэффициент k1=0,05°/мм, k2=0,025°/мм, ΔD - увеличение диаметра разрезаемой трубы, мм, по сравнению с диаметром, равным 120 мм, при этом обеспечивают подачу пилы, равную 6-7,2 мкм/зуб, и скорость ее подачи в пределах 0,04-0,06 м/с. Технический результат заключается в повышении качества поверхности торцов заготовок после резки и повышении долговечности дисковых пил. 1 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к технологии термофрикционной резки дисковой пилой нагретого до температуры 1150-1250°С трубопроката из низкоуглеродистых сталей и может быть использовано, например, в трубопрокатном производстве. Способ термофрикционной резки дисковой пилой нагретого до температуры 1150-1250°С трубопроката диаметром 120-200 мм из низкоуглеродистой стали включает разделение нагретой стальной трубы дисковой пилой для термофрикционной резки из низколегированной стали, содержащей цельнометаллический корпус с расположенными по контуру клиновидными режущими зубьями, каждый из которых содержит передний отрицательный угол, равный -20°, угол между боковыми поверхностями зуба, равный 40°, положительный задний угол α, а также боковой угол скоса зуба пилы ϕ. Осуществляют процесс термофрикционной резки нагретого трубопроката из низкоуглеродистой стали диаметром 120 мм дисковой пилой с углами заточки каждого ее зуба α и ϕ, равными 6° и 9°, соответственно, для больших диаметров разрезаемых стальных труб из предлагаемого диапазона задний угол определяют по формуле: α=α0-k1⋅ΔD, а боковой угол скоса зуба пилы ϕ - по формуле: ϕ=ϕ0-k2⋅ΔD, где α0=6°, ϕ0=9°, коэффициент k1=0,025°/мм, k2=0,0375°/мм, ΔD - увеличение диаметра разрезаемой трубы в мм по сравнению с диаметром, равным 120 мм, при этом обеспечивают подачу пилы равную 7-13 мкм/зуб и скорость ее подачи в пределах 0,05-0,1 м/с. Технический результат заключается в повышении качества поверхности торцов заготовок после резки и повышении долговечности дисковых пил. 1 з.п. ф-лы, 1 табл., 3 пр., 2 ил.

Изобретение относится к технологии термофрикционной резки дисковой пилой нагретого до температуры 1150-1250°С трубопроката диаметром 120-200 мм из аустенитной хромоникелевой стали и может быть использовано, например, в трубопрокатном производстве. Способ включает разделение нагретой стальной трубы дисковой пилой для термофрикционной резки из низколегированной стали, содержащей цельнометаллический корпус с расположенными по контуру клиновидными режущими зубьями, каждый из которых содержит передний отрицательный угол, равный -35 градусам, угол между боковыми поверхностями зуба, равный 70 градусам, положительный задний угол α, а также боковой угол скоса зуба пилы φ. Осуществляют процесс термофрикционной резки нагретого трубопроката из аустенитной хромоникелевой стали диаметром 120 мм дисковой пилой с углами заточки каждого её зуба α и φ, равными 12 и 14 градусам, соответственно. Для больших диаметров разрезаемых стальных труб из предлагаемого диапазона задний угол, а также боковой угол скоса зуба пилы, рассчитывают по предлагаемым формулам, при этом обеспечивают подачу пилы, равную 6-12 мкм/зуб, и скорость её подачи в пределах 0,04-0,08 м/с. Техническим результатом является обеспечение высокого качества поверхности торцов заготовок после резки, а также повышение долговечности дисковых пил. 1 з.п. ф-лы, 1 табл., 2 ил., 3 пр.

Изобретение относится к технологии термофрикционной резки дисковой пилой нагретого до температуры 1150-1250°С трубопроката из аустенитных хромоникелевых сталей и может быть использовано, например, в трубопрокатном производстве. Способ термофрикционной резки дисковой пилой нагретого до температуры 1150-1250°С трубопроката диаметром 40-120 мм из аустенитной хромоникелевой стали включает разделение нагретой стальной трубы дисковой пилой для термофрикционной резки из низколегированной стали, содержащей цельнометаллический корпус с расположенными по контуру клиновидными режущими зубьями, каждый из которых содержит передний отрицательный угол, равный -35 градусам, угол между боковыми поверхностями зуба, равный 70 градусам, положительный задний угол α, а также боковой угол скоса зуба пилы ϕ. Осуществляют процесс термофрикционной резки нагретого трубопроката из аустенитной хромоникелевой стали диаметром 40 мм дисковой пилой с одинаковыми углами заточки каждого её зуба α и ϕ, равными 16 градусам, для больших диаметров разрезаемых стальных труб из предлагаемого диапазона задний угол определяют по формуле α=αо-k1·ΔD, а боковой угол скоса зуба пилы ϕ - по формуле ϕ=ϕо-k2·ΔD, где αо=ϕо=16 градусам, коэффициент k1=0,05 градусов/мм, k2=0,025 градусов/мм, ΔD - увеличение диаметра разрезаемой трубы в мм по сравнению с диаметром, равным 40 мм, при этом обеспечивают подачу пилы, равную 7,5-16,5 мкм/зуб и скорость её подачи в пределах 0,06-0,12 м/с. Технический результат заключается в повышении качества поверхности торцов заготовок после резки и повышении долговечности дисковых пил. 1 з.п. ф-лы, 2 ил.

Изобретение относится к технологии термофрикционной резки дисковой пилой нагретого до температуры 1150-1250°С трубопроката из низкоуглеродистых сталей и может быть использовано, например, в трубопрокатном производстве. Способ термофрикционной резки дисковой пилой нагретого до температуры 1150-1250°С трубопроката диаметром 40-120 мм из низкоуглеродистой стали включает разделение нагретой стальной трубы дисковой пилой для термофрикционной резки из низколегированной стали, содержащей цельнометаллический корпус с расположенными по контуру клиновидными режущими зубьями, каждый из которых содержит передний отрицательный угол, равный -35°, угол между боковыми поверхностями зуба, равный 70°, положительный задний угол α, а также боковой угол скоса зуба пилы ϕ. Осуществляют процесс термофрикционной резки нагретого трубопроката из низкоуглеродистой стали диаметром 40 мм дисковой пилой с углами заточки каждого её зуба α и ϕ, равными 12 и 14° соответственно, для больших диаметров разрезаемых стальных труб из предлагаемого диапазона задний угол определяют по формуле α=αо-k⋅ΔD, а боковой угол скоса зуба пилы ϕ - по формуле ϕ=ϕо-k⋅ΔD, где αо=12°, ϕо=14°, коэффициент k=0,025 град./мм, ΔD - увеличение диаметра разрезаемой трубы в мм по сравнению с диаметром, равным 40 мм, при этом обеспечивают подачу пилы, равную 7-16 мкм/зуб, и скорость её подачи в пределах 0,07-0,14 м/с. Технический результат заключается в повышении качества поверхности торцов заготовок после резки и повышении долговечности дисковых пил. 1 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к технологии термофрикционной резки дисковой пилой нагретого до температуры 1150-1250°С трубопроката из низколегированных сталей и может быть использовано, например, в трубопрокатном производстве. Способ термофрикционной резки дисковой пилой нагретого до температуры 1150-1250°С трубопроката диаметром 120-200 мм из низколегированной стали включает разделение нагретой стальной трубы дисковой пилой для термофрикционной резки из низколегированной стали, содержащей цельнометаллический корпус с расположенными по контуру клиновидными режущими зубьями, каждый из которых содержит передний отрицательный угол, равный -35 градусам, угол между боковыми поверхностями зуба, равный 70 градусам, положительный задний угол α, а также боковой угол скоса зуба пилы ϕ. Осуществляют процесс термофрикционной резки нагретого трубопроката из низколегированной стали диаметром 120 мм дисковой пилой с углами заточки каждого ее зуба α и ϕ, равными 10 и 12 градусам, соответственно, для больших диаметров разрезаемых стальных труб из предлагаемого диапазона задний угол определяют по формуле: α=α0-k1⋅ΔD, а боковой угол скоса зуба пилы ϕ - по формуле: ϕ=ϕ0-k2⋅ΔD, где α0=10 градусам, ϕ0=12 градусам, коэффициент k1=0,05 градусов/мм, k2=0,0375 градусов/мм, ΔD - увеличение диаметра разрезаемой трубы в мм по сравнению с диаметром, равным 120 мм, при этом обеспечивают подачу пилы, равную 6-14 мкм/зуб и скорость ее подачи в пределах 0,05-0,12 м/с. Технический результат заключается в повышении качества поверхности торцов заготовок после резки и повышении долговечности дисковых пил. 1 з.п. ф-лы, 1 табл., 3 пр., 2 ил.

Изобретение относится к технологии термофрикционной резки дисковой пилой нагретого до температуры 1150-1250°С трубопроката из низколегированных сталей и может быть использовано, например, в трубопрокатном производстве. Способ термофрикционной резки дисковой пилой нагретого до температуры 1150-1250°С трубопроката диаметром 40-120 мм из низколегированной стали включает разделение нагретой стальной трубы дисковой пилой для термофрикционной резки из низколегированной стали, содержащей цельнометаллический корпус с расположенными по контуру клиновидными режущими зубьями, каждый из которых содержит передний отрицательный угол, равный -35 градусам, угол между боковыми поверхностями зуба, равный 70 градусам, положительный задний угол α, а также боковой угол скоса зуба пилы ϕ. Осуществляют процесс термофрикционной резки нагретого трубопроката из низколегированной стали диаметром 40 мм дисковой пилой с углами заточки каждого ее зуба α и ϕ, равными 14 и 16 градусам, соответственно, для больших диаметров разрезаемых стальных труб из предлагаемого диапазона задний угол определяют по формуле: α=α0-k⋅ΔD, а боковой угол скоса зуба пилы ϕ – по формуле: ϕ=ϕ0-k⋅ΔD, где α0=14 градусам, ϕ0=16 градусам, коэффициент k=0,05 градусов/мм, ΔD – увеличение диаметра разрезаемой трубы в мм по сравнению с диаметром, равным 40 мм, при этом обеспечивают подачу пилы, равную 8-16 мкм/зуб, и скорость ее подачи в пределах 0,06-0,13 м/с. Технический результат заключается в повышении качества поверхности торцов заготовок после резки и повышении долговечности дисковых пил. 1 з.п. ф-лы, 1 табл., 2 ил., 3 пр.

Изобретение относится к технологии термофрикционной резки дисковой пилой нагретого до температуры 1150-1250°С трубопроката из низкоуглеродистых сталей и может быть использовано, например, в трубопрокатном производстве. Способ термофрикционной резки дисковой пилой нагретого до температуры 1150-1250°С трубопроката диаметром 120-200 мм из низкоуглеродистой стали включает разделение нагретой стальной трубы дисковой пилой для термофрикционной резки из низколегированной стали, содержащей цельнометаллический корпус с расположенными по контуру клиновидными режущими зубьями, каждый из которых содержит передний отрицательный угол, равный -35°, угол между боковыми поверхностями зуба, равный 70°, положительный задний угол α, а также боковой угол скоса зуба пилы ϕ. Осуществляют процесс термофрикционной резки нагретого трубопроката из низкоуглеродистой стали диаметром 120 мм дисковой пилой с углами заточки каждого ее зуба α и ϕ, равными 10° и 12° соответственно, для больших диаметров разрезаемых стальных труб из предлагаемого диапазона задний угол определяют по формуле: α=αо-k⋅ΔD, а боковой угол скоса зуба пилы ϕ - по формуле: ϕ=ϕо-k⋅ΔD, где αо=10°, ϕо=12°, коэффициент k=0,075°/мм, ΔD - увеличение диаметра разрезаемой трубы в мм по сравнению с диаметром, равным 120 мм, при этом обеспечивают подачу пилы, равную 6-14 мкм/зуб, и скорость ее подачи в пределах 0,06-0,12 м/с. Технический результат заключается в повышении качества поверхности торцов заготовок после резки и повышении долговечности дисковых пил. 1 з.п. ф-лы, 2 ил.

Изобретение относится к технологии термофрикционной резки дисковой пилой нагретого до температуры 1150-1250 оС трубопроката диаметром 120-200 мм из низколегированных сталей и может быть использовано, например, в трубопрокатном производстве. Технический результат достигается в способе термофрикционной резки дисковой пилой нагретого до температуры 1150-1250 оС трубопроката диаметром 120-200 из низколегированной стали, включающем разделение нагретой стальной трубы дисковой пилой для термофрикционной резки из низколегированной стали, содержащей цельнометаллический корпус с расположенными по контуру клиновидными режущими зубьями, каждый из которых содержит передний отрицательный угол равный -20 градусам, угол между боковыми поверхностями зуба равный 40 градусам, положительный задний угол α, а также боковой угол скоса зуба пилы φ. Осуществляют процесс термофрикционной резки нагретого трубопроката из низколегированной стали диаметром 120 мм дисковой пилой с углами заточки каждого её зуба α и φ равными 8 и 10 градусам соответственно, для больших диаметров разрезаемых стальных труб из предлагаемого диапазона задний угол, а также боковой угол скоса зуба пилы рассчитывают по предлагаемым формулам, при этом обеспечивают подачу пилы равную 7-15 мкм/зуб и скорость её подачи в пределах 0,04-0,08 м/с. Техническим результатом заявленного способа является высокое качество поверхности торцов заготовок после резки за счет отсутствия на них дефектов в виде заусенцев недопустимых размеров, а также повышение долговечности дисковых пил. 1 з.п. ф-лы, 2 ил.

Изобретение относится к технологии термофрикционной резки дисковой пилой нагретого до температуры 1150-125°С трубопроката из аустенитных хромоникелевых сталей и может быть использовано, например, в трубопрокатном производстве. Способ включает разделение нагретой стальной трубы дисковой пилой для термофрикционной резки из низколегированной стали, содержащей цельнометаллический корпус с расположенными по контуру режущими зубьями, каждый из которых содержит передний отрицательный угол γ, равный -20°, угол между боковыми поверхностями зуба β, равный 40°, положительный задний угол α, равный боковому углу скоса каждого зуба пилы ϕ, при этом величина каждого из углов α и ϕ равна 10-15°. При этом обеспечивают подачу пилы 7,2-15,8 мкм/зуб и скорость подачи 0,04-0,08 м/с. Достигается высокое качество поверхности торцов заготовок после резки, а также повышение долговечности дисковых пил при переходе от одного диаметра разрезаемой заготовки к другому. 1 з.п. ф-лы, 2 ил., 1 табл., 3 пр.

Изобретение относится к технологии резки дисковой пилой нагретых заготовок круглого сечения из низкоуглеродистых сталей и может быть использовано, например, в трубопрокатном производстве при резке как литых, так и горячекатаных заготовок круглого сечения. Способ включает разделение стальной заготовки дисковой пилой из низколегированной стали, содержащей цельнометаллический корпус с расположенными по контуру клиновидными режущими зубьями, каждый из которых имеет передний угол режущей кромки, равный (-5°)-(-7°), задний угол, равный 15°, боковой угол скоса зубьев пилы, определяемый по зависимости где ϕ - боковой угол скоса зубьев пилы в градусах, ΔD - увеличение диаметра D разрезаемой заготовки по сравнению с диаметром Do=200 мм. При этом обеспечивают подачу пилы, равную 2,8-3,0 мм/зуб, и скорость резания в пределах 70-105 м/с. Достигается высокое качество поверхности торцов заготовок после резки и повышение долговечности дисковых пил при переходе от одного диаметра разрезаемой заготовки к другому. 1 з.п. ф-лы, 2 ил., 1 табл., 3 пр.

Изобретение относится к технологии термофрикционной резки дисковой пилой нагретого до температуры 1150-1250 °С трубопроката из низкоуглеродистых сталей и может быть использовано, например, в трубопрокатном производстве. Способ включает разделение нагретой стальной трубы дисковой пилой для термофрикционной резки из низколегированной стали, содержащей цельнометаллический корпус с расположенными по контуру режущими зубьями, каждый из которых содержит передний отрицательный угол γ, равный -20°, угол между боковыми поверхностями зуба β, равный 40°, положительный задний угол α, равный боковому углу скоса каждого зуба пилы ϕ, при этом величина каждого из углов α и ϕ равна 5-8°. При этом обеспечивают подачу пилы 7,2-15,8 мкм/зуб и скорость подачи 0,06-0,13 м/с. Достигается высокое качество поверхности торцов заготовок после резки, а также повышение долговечности дисковых пил при переходе от одного диаметра разрезаемой заготовки к другому. 1 з.п. ф-лы, 2 ил., 1 табл., 3 пр.

Изобретение относится к технологии резки дисковой пилой нагретых заготовок круглого сечения из аустенитных хромоникелевых сталей и может быть использовано в трубопрокатном производстве. Способ включает разделение стальной заготовки дисковой пилой из низколегированной стали, содержащей цельнометаллический корпус с расположенными по контуру клиновидными режущими зубьями, каждый из которых содержит передний отрицательный угол, равный (-6)-(-12) град, задний угол, равный 15 град, и боковой угол скоса зуба пилы. Для диаметра заготовки 180 мм боковой угол скоса равен 25 град, для диаметра 250 мм – 21 град и для диаметра 300 мм – 16 град. При этом обеспечивают подачу пилы, равную 3,2-3,6 мм/зуб, и скорость резания в пределах 70-105 м/с. Способ предназначен для резки сталей 12Х18Н10Т, 08Х18Н12Т или 04Х18Н10. Достигается высокое качество поверхности торцов заготовок после резки и повышение долговечности дисковых пил при переходе от одного диаметра разрезаемой заготовки к другому. 1 з.п. ф-лы, 2 ил., 1 табл., 3 пр.

Изобретение относится к технологии резки дисковой пилой нагретых заготовок круглого сечения из аустенитных хромоникелевых сталей и может быть использовано в трубопрокатном производстве. Способ включает разделение стальной заготовки дисковой пилой из низколегированной стали, содержащей цельнометаллический корпус с расположенными по контуру клиновидными режущими зубьями, каждый из которых имеет задний угол, равный 15 градусам. Передний угол режущей кромки каждого зуба равен (-5) – (-8) градусам. Боковой угол скоса зубьев пилы для диаметра заготовки 300 мм равен 16 градусов, для диаметра 350 мм – 12,8 градуса и для диаметра 410 мм – 9,1 градуса. При этом обеспечивают подачу пилы, равную 3,2-3,6 мм/зуб и скорость резания в пределах 70-105 м/с. Способ предназначен для резки заготовок из аустенитной хромоникелевой стали 12Х18Н10Т, 08Х18Н12Т или 04Х18Н10. Достигается повышение качества торцов заготовок после резки и увеличение долговечности дисковых пил при переходе от одного диаметра заготовки к другому.. 1 з.п. ф-лы, 1 табл., 3 пр., 2 ил.

Изобретение относится к технологии резки дисковой пилой нагретых заготовок круглого сечения из низколегированных сталей и может быть использовано, например, в трубопрокатном производстве при резке как литых, так и горячекатаных заготовок круглого сечения. Способ включает разделение стальной заготовки дисковой пилой из низколегированной стали, содержащей цельнометаллический корпус с расположенными по контуру клиновидными режущими зубьями, каждый из которых содержит передний угол режущей кромки, равный (-8°) - (-10°), задний угол, равный 15°, и боковой угол скоса зубьев пилы, определяемый по зависимости: где ϕ - боковой угол скоса зубьев пилы в градусах, ΔD - увеличение диаметра D разрезаемой заготовки по сравнению с диаметром Do=200 мм. При этом обеспечивают подачу пилы, равную 3,2-3,6 мм/зуб, и скорость резания в пределах 70-105 м/с. Достигается высокое качество поверхности торцов заготовок после резки за счет отсутствия на них дефектов в виде заусенцев и повышение долговечности дисковых пил при переходе от одного диаметра разрезаемой заготовки к другому за счёт применения пил с оптимальными углами заточки в сочетании с технологическими режимами подачи пилы и скорости резания. 1 з.п. ф-лы, 1 табл., 3 пр., 2 ил.

Изобретение относится к технологии термофрикционной резки дисковой пилой нагретого до температуры 1150-1250 оС трубопроката из низколегированных сталей и может быть использовано, например, в трубопрокатном производстве. Способ включает разделение нагретой стальной трубы дисковой пилой для термофрикционной резки из низколегированной стали, содержащей цельнометаллический корпус с расположенными по контуру режущими зубьями, каждый из которых содержит передний отрицательный угол γ, равный -20о, угол между боковыми поверхностями зуба β, равный 40о, положительный задний угол α, равный боковому углу скоса каждого зуба пилы ϕ и равный 8-12о. При этом обеспечивают подачу пилы 7,2-15,8 мкм/зуб и скорость подачи 0,05-0,1 м/с. Достигается высокое качество поверхности торцов заготовок после резки и повышение долговечности дисковых пил при переходе от одного диаметра разрезаемой заготовки к другому. 1 з.п. ф-лы, 2 ил., 1 табл., 3 пр.

Изобретение относится к технологии получения покрытий на металлах с помощью энергии взрывчатых веществ и может быть использовано при изготовлении деталей энергетических и химических установок, обладающих повышенной жаростойкостью. Cоставляют двухслойный пакет из неподвижной стальной пластины и размещённой над ней фехралевой метаемой пластины толщиной 0,8-1 мм. Осуществляют сварку взрывом пластин при заданной скорости детонации заряда взрывчатого вещества. Высоту заряда взрывчатого вещества и сварочный зазор между пластинами выбирают из условия получения заданной скорости их соударения. Проводят алитирование фехралевого слоя сваренной заготовки в расплаве силумина марки АЛ2 и термообработку полученной заготовки. Техническим результатом является повышение рабочей температуры жаростойкого покрытия в окислительных газовых средах и упрощение способа получения покрытия. 1 з.п. ф-лы, 2 ил., 1 табл., 3 пр.

Изобретение относится к способу получения жаростойких покрытий на стали и может быть использовано при изготовлении деталей энергетических и химических установок, обладающих повышенной жаростойкостью. Составляют пакет из стальной пластины и размещенных по обе её стороны нихромовых пластин толщиной 0,8-1 мм. Осуществляют сварку взрывом этих пластин при скорости детонации зарядов взрывчатого вещества 2240-2950 м/с. Высоту зарядов взрывчатого вещества и сварочные зазоры между свариваемыми металлами выбирают из условия получения скорости соударения нихромовых пластин со стальной пластиной в пределах 550-660 м/с. Выполняют алитирование обоих нихромовых слоёв в расплаве алюминия при 720-760°С в течение 0,015-0,025 ч. Термообработку полученной заготовки осуществляют в расплаве алюминия при 1000-1100°С и выдержке при этой температуре в течение 3-8 ч. Технический результат - повышение рабочей температуры жаростойких покрытий в окислительных газовых средах и упрощение способа получения покрытия. 1 з.п. ф-лы, 2 ил., 1 табл., 3 пр.

Изобретение относится к технологии получения покрытий на металлах с помощью энергии взрывчатых веществ и может быть использовано при изготовлении деталей энергетических и химических установок, обладающих повышенной жаростойкостью. Cоставляют трехслойный пакет, состоящий из неподвижной стальной пластины и симметрично размещенных по обе ее стороны метаемых фехралевых пластин, толщиной 0,8-1 мм. Осуществляют сварку взрывом этих пластин при заданной скорости детонации зарядов взрывчатого вещества. Высоту зарядов взрывчатого вещества и сварочный зазор между пластинами выбирают из условия получения заданной скорости их соударения. Затем проводят алитирование фехралевых слоев сваренной заготовки в расплаве силумина марки АЛ2 и термообработку полученной заготовки. Техническим результатом изобретения является повышение рабочей температуры жаростойких покрытий в окислительных газовых средах и упрощение способа получения покрытий. 1 з.п. ф-лы, 2 ил., 1 табл., 3 пр.

Изобретение относится к технологии получения покрытий на металлах с помощью энергии взрывчатых веществ и может быть использовано при изготовлении деталей энергетических и химических установок, обладающих повышенной жаростойкостью. Cоставляют двухслойный пакет из неподвижной стальной пластины и размещённой над ней нихромовой метаемой пластины толщиной 0,8-1 мм. Осуществляют сварку взрывом пластин при заданной скорости детонации заряда взрывчатого вещества. Высоту заряда взрывчатого вещества и сварочный зазор между пластинами выбирают из условия получения заданной скорости их соударения. Проводят алитирование нихромового слоя сваренной заготовки в расплаве алюминия и термообработку полученной заготовки. Техническим результатом изобретения является повышение рабочей температуры жаростойкого покрытия в окислительных газовых средах и упрощение способа получения покрытия. 1 з.п. ф-лы, 2 ил., 1 табл., 3 пр.

Изобретение может быть использовано для получения износостойких покрытий на металлах с помощью энергии взрывчатых веществ (ВВ), например, при изготовлении пар трения в виде тормозных устройств. Составляют двухслойный пакет, содержащий плакирующую пластину из алюминиевого сплава и плакируемую - из меди с заданным соотношением толщин. Сварку взрывом пакета осуществляют при заданных скоростях детонации заряда взрывчатого вещества и соударения плакирующей пластины с плакируемой. Проводят термическую обработку сваренной заготовки для получения между слоями из алюминиевого сплава и меди сплошной высокотвердой интерметаллидной диффузионной прослойки. Осуществляют охлаждение полученной заготовки в водном растворе поваренной соли с обеспечением самопроизвольного отделения слоя из алюминиевого сплава от медного слоя по диффузионной интерметаллидной прослойке и формированием высокотвердых износостойких покрытий, состоящих из интерметаллидов системы алюминий - медь. Способ обеспечивает одновременное получение на поверхностях медной и алюминиевой пластин высокотвердых износостойких интерметаллидных покрытий. 1 з.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к получению композиционного материала из стали и смесей порошков никеля и борида вольфрама. Способ включает размещение в цилиндрической стальной ампуле прессуемой порошковой смеси, инициирование процесса детонации в заряде взрывчатого вещества (ВВ) и взрывное прессование. Прессуемую порошковую смесь, состоящую из Ni и W2B5, размещают в цилиндрических ампулах в виде труб из аустенитной стали, укладывают их вплотную друг к другу на стальное основание в виде пластины, устанавливают с двух сторон полученного пакета вспомогательные стержни в виде стальных труб, заполненных высокопластичным легкоплавким металлом, устанавливают на поверхности метаемую стальную пластину с зарядом ВВ, размещают полученную сборку на грунте и осуществляют взрывное прессование. Деформированные ампулы подвергают термической обработке с последующим охлаждением на воздухе. Обеспечивается получение композиционного материала в виде стержней, каждый из которых содержит оболочку из аустенитной стали, соединённую локальными сварными соединениями с расположенным внутри неё высокотвёрдым износостойким сплавом, состоящим из продуктов взаимодействия никеля с боридом вольфрама. 2 з.п. ф-лы, 6 ил., 2 табл., 3 пр.

Изобретение относится к технологии получения износостойких композиционных материалов с помощью энергии взрывчатых веществ (ВВ) и может быть использовано для изготовления пар трения. Прессуемые порошковые смеси из никеля (Ni) и 25-30 мас.% борида вольфрама (W2B5) размещают в цилиндрических ампулах в виде труб из аустенитной стали и укладывают их вплотную друг к другу на стальное основание в виде пластины. Устанавливают с двух сторон полученного пакета из цилиндрических ампул вспомогательные стержни в виде стальных труб, заполненных высокопластичным легкоплавким металлом. Устанавливают на поверхности пакета из цилиндрических ампул метаемую стальную пластину с зарядом ВВ, размещают полученную сборку на грунте и осуществляют взрывное прессование путём инициирования процесса детонации в заряде ВВ вдоль пакета из ампул при заданной высоте и скорости детонации заряда ВВ. Сдеформированные ампулы подвергают термической обработке при температуре с последующим охлаждением на воздухе. Одновременно получают несколько цельносварных композиционных материалов в виде стержней, каждый из которых содержит оболочку из аустенитной стали, а внутри её - высокотвёрдый износостойкий сплав, состоящий из продуктов взаимодействия никеля с боридом вольфрама. 2 з.п. ф-лы, 6 ил., 2 табл, 4 пр.

Изобретение может быть использовано для получения износостойких покрытий на металлах с помощью энергии взрывчатых веществ (ВВ), например при изготовлении пар трения в виде тормозных устройств. Составляют симметричный пакет, содержащий две одинаковые плакирующие пластины из меди и плакируемую пластину из алюминия с заданным соотношением толщин. Сварку взрывом пакета осуществляют при заданных скоростях детонации заряда взрывчатого вещества и соударения плакирующих пластин с плакируемой. Проводят термическую обработку сваренной заготовки для получения между слоями из алюминиевого сплава и меди сплошной высокотвердой интерметаллидной диффузионной прослойки. Осуществляют охлаждение полученной заготовки в водном растворе поваренной соли с обеспечением самопроизвольного разделения слоев из алюминиевого сплава и меди по диффузионной интерметаллидной прослойке и формированием высокотвердых износостойких покрытий, состоящих из интерметаллидов системы алюминий-медь. Способ обеспечивает одновременное получение высокотвердых износостойких интерметаллидных покрытий на двух медных пластинах и на алюминиевой пластине с двух ее сторон. 1 з.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к получению износостойких композиционных материалов взрывным прессованием, которые могут быть использованы для изготовления пар трения. Прессуемую порошковую смесь, состоящую из никеля и 45-50 мас.% борида вольфрама, размещают в цилиндрических ампулах в виде труб из аустенитной стали, укладывают их вплотную друг к другу на стальное основание в виде пластины, устанавливают с двух сторон полученного пакета из цилиндрических ампул вспомогательные стержни в виде стальных труб, заполненных высокопластичным легкоплавким металлом, с таким же наружным диаметром, как у цилиндрических ампул, устанавливают на поверхности пакета из цилиндрических ампул метаемую стальную пластину с зарядом ВВ, размещают полученную сборку на грунте и осуществляют взрывное прессование путём инициирования процесса детонации в заряде ВВ вдоль пакета из ампул. Сдеформированные ампулы с находящимися в них спрессованными порошковыми смесями подвергают термической обработке с получением цельносварного композиционного материала в виде стержней, каждый из которых содержит оболочку из аустенитной стали с размещенным внутри неё высокотвёрдым износостойким сплавом, состоящим из продуктов взаимодействия никеля с боридом вольфрама. Обеспечивается повышение твердости. 2 з.п. ф-лы, 2 табл., 6 ил., 3 пр.

Изобретение относится к технологии получения износостойких покрытий на металлах с помощью энергии взрывчатых веществ (ВВ) и может быть использовано, например, при изготовлении пар трения в виде тормозных устройств. Составляют пакет с симметричным размещением между двумя одинаковыми пластинами из алюминиевого сплава медной пластины. Осуществляют сварку взрывом с заданной скоростью соударения пластин. Проводят термическую обработку сваренной заготовки для получения между слоями из алюминиевого сплава и меди интерметаллидных диффузионных прослоек. Охлаждают заготовку в водном растворе поваренной соли с обеспечением самопроизвольного отделения слоев из алюминиевого сплава от медного слоя по диффузионным интерметаллидным прослойкам и формированием при этом на пластинах из алюминиевого сплава и меди высокотвердых износостойких покрытий, состоящих из интерметаллидов системы алюминий-медь. В результате одного технологического цикла на двух пластинах из алюминиевого сплава АМг6 получают односторонние износостойкие покрытия, а на медной пластине – с двух ее сторон. 1 з.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к получению износостойких покрытий на титане с помощью энергии взрывчатых веществ и с использованием лазерного излучения, в частности, при изготовлении материалов для пар трения, тормозных устройств и т.п. Составляют симметричный трехслойный пакет из чередующихся пластин медно-никелевого сплава и титана с заданным соотношением толщин слоев при толщине каждого плакирующего слоя из медно-никелевого сплава 0,8-1,2 мм. Осуществляют сварку взрывом пакета и горячую прокатку сваренного трехслойного пакета с обжатием, обеспечивающим толщину каждого слоя из медно-никелевого сплава, равную 0,1-0,3 мм. Со стороны одного из слоев из медно-никелевого сплава осуществляют термическое воздействие сканирующим лазерным лучом с мощностью излучения 1,3-1,4 кВт с оплавлением металлических слоев. Скорость его перемещения и диаметр выбирают из условия получения проплавления титанового слоя на глубину, равную 1-1,2 толщины слоя из медно-никелевого сплава. Получают с одной стороны титановой пластины высокотвердое износостойкое покрытие с высокой твердостью и износостойкостью, а с другой ее стороны – покрытие из медно-никелевого сплава, защищающее ее поверхность от возникновения в ней микротрещин при эксплуатации в условиях повышенных температур (до 600°С), позволяющее соединять полученные изделия пайкой с другими металлическими изделиями. 1 з.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к технологии получения износостойких покрытий на титане с помощью энергии взрывчатых веществ и лазерного излучения и может быть использовано, в частности, при изготовлении материалов для пар трения, тормозных устройств. Составляют двухслойный пакет, в котором плакирующая пластина выполнена из медно-никелевого сплава, а плакируемая - из титана с соотношением толщин плакирующей и плакируемой пластин равным 1:(10-20) при толщине плакирующего слоя равной 0,8-1,2 мм. Сваривают его взрывом, после чего производят горячую прокатку сваренного пакета при температуре 600-650°С с обжатием до толщины слоя из медно-никелевого сплава равной 0,1-0,3 мм. Термическое воздействие на прокатанную заготовку осуществляют сканирующим лазерным лучом с мощностью излучения 1,3-1,4 кВт с оплавлением обоих металлических слоев. Параметры лазерного воздействия выбирают из условия получения проплавления титанового слоя на глубину, равную 1-1,2 толщины слоя из медно-никелевого сплава, с формированием при этом на поверхности титановой пластины высокотвердого износостойкого покрытия, состоящего из титана и компонентов медно-никелевого сплава. Изобретение обеспечивает получение высокотвердого износостойкого покрытия без пор, трещин и других дефектов, с пониженной склонностью к хрупкому разрушению при динамических нагрузках. 1 з.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к технологии получения износостойких покрытий на титановой пластине с помощью энергии взрывчатых веществ и лазерного излучения и может быть использовано, в частности, при изготовлении материалов для пар трения, тормозных устройств. Составляют трехслойный пакет из чередующихся плакирующих слоев из медно-никелевого сплава и титана с симметричным расположением титановой пластины относительно плакирующих слоев и заданным соотношением толщин слоев. Сваривают пакет взрывом, после чего производят его горячую прокатку с обжатием до заданной толщины. Термическое воздействие на прокатанную заготовку осуществляют сканирующим лазерным лучом последовательно со стороны каждого слоя из медно-никелевого сплава с оплавлением металлических слоев. Скорость перемещения луча относительно обрабатываемой поверхности и его диаметр выбирают из условия получения проплавления титанового слоя на заданную глубину с формированием при этом на поверхностях титановой пластины высокотвердых износостойких покрытий, состоящих из титана и компонентов медно-никелевого сплава. Изобретение обеспечивает получение высокотвердых износостойких покрытий без пор, трещин и других дефектов с низкой склонностью к хрупкому разрушению при динамических нагрузках. 1 з.п. ф-лы, 1 табл., 3 пр.

Изобретение может быть использовано для получения износостойких материалов с помощью энергии взрывчатых веществ (ВВ), в частности при изготовлении пар трения для эксплуатации в условиях неагрессивных сред. Получают пятислойные заготовки с чередованием слоев: медь - низкоуглеродистая сталь - титан - низкоуглеродистая сталь – медь и последующую сварку взрывом в многослойном пакете медных слоев между собой на регламентированных режимах. После горячей прокатки сваренных пятислойных заготовок из 6-8 из них составляют многослойный пакет, сварку взрывом которого осуществляют при скорости детонации ВВ 2400-2900 м/с, при этом высоту заряда ВВ и сварочные зазоры между пятислойными заготовками из меди титана и стали при сварке многослойного пакета выбирают из условия получения скоростей соударения их между собой в пределах 315-440 м/с. Затем производят отжиг сваренного многослойного пакета с формированием при этом между слоями из низкоуглеродистой стали и титановыми слоями интерметаллидных прослоек. Способ обеспечивает получение многослойного композиционного материала из меди, титана и стали с низкой скоростью изнашивания и обеспечением большой величины допускаемого износа при неизменности его служебных свойств. 1 табл., 3 пр.

Изобретение может быть использовано при получении износостойких материалов с помощью энергии взрывчатых веществ (ВВ), в частности, при изготовлении пар трения для эксплуатации в условиях неагрессивных сред. Получают пятислойные заготовки с чередованием слоев: медь - низкоуглеродистая сталь - титан - низкоуглеродистая сталь - медь для последующей сварки взрывом в многослойном пакете медных слоев между собой на регламентированных режимах. После горячей прокатки сваренных пятислойных заготовок получают сваркой взрывом две многослойные заготовки, каждая из которых состоит из 6-8 полученных пятислойных заготовок из меди, титана и стали. Затем составляют многослойный пакет из двух полученных многослойных заготовок из меди, титана и стали, которые также соединяют сваркой взрывом. Производят отжиг сваренного многослойного пакета. Способ обеспечивает получение многослойного композиционного материала из меди, титана и стали с низкой скоростью изнашивания и с обеспечением большой величины допускаемого износа при сохранении его служебных свойств. 1 табл., 3 пр.

Изобретение может быть использовано при получении износостойких материалов с помощью энергии взрывчатых веществ (ВВ), в частности, при изготовлении пар трения в виде тормозных устройств, предназначенных для эксплуатации в условиях неагрессивных сред. Получают пятислойные заготовки с чередованием слоев медь - низкоуглеродистая сталь - титан - низкоуглеродистая сталь - медь, размещенных из условия последующей сварки взрывом в многослойном пакете медных слоев между собой. Толщина каждого слоя меди составляет 2-3 мм. После горячей прокатки сваренных пятислойных заготовок получают три многослойные заготовки, каждая из которых состоит из 6-8 полученных пятислойных заготовок из меди, титана и стали, путем сварки взрывом каждой из них. Составляют многослойный пакет из трех полученных многослойных заготовок из меди, титана и стали и осуществляют его сварку взрывом с помощью двух симметрично расположенных относительно его зарядов ВВ. После сварки взрывом производят отжиг сваренного многослойного пакета. Способ обеспечивает получение многослойного композиционного материала из меди, титана и стали с большей толщиной и более низкой скоростью изнашивания при длительной эксплуатации в условиях неагрессивных сред. 1 табл., 3 пр.

Изобретение может быть использовано при изготовлении, в частности, пар трения, тормозных устройств с использованием технологии получения износостойких покрытий на металлах с помощью энергии взрывчатых веществ (ВВ). Составляют двухслойный пакет, в котором плакирующая пластина выполнена из меди, а плакируемая - из магниевого сплава с заданным соотношением толщин. Проводят термическую обработку сваренной заготовки при температуре 450-480°С в течение 6-10 часов для получения между слоями из меди и магниевого сплава сплошной высокотвердой интерметаллидной диффузионной прослойки, состоящей из меди и компонентов магниевого сплава. Полученную заготовку охлаждают в водном растворе поваренной соли, что приводит к самопроизвольному отделению медного слоя от слоя из магниевого сплава по диффузионной интерметаллидной прослойке с формированием при этом на пластинах из меди и из магниевого сплава высокотвердых износостойких покрытий. Способ обеспечивает одновременное получение высокотвердых износостойких покрытий на пластинах из меди и из магниевого сплава с малой амплитудой волн на их наружных поверхностях. 2 з.п. ф-лы, 1 табл., 3 пр.

Изобретение может быть использовано для получения жаростойких покрытий при изготовлении деталей энергетических и химических установок. Составляют пакет с симметричным размещением между двумя алюминиевыми пластинами толщиной 1,5-2 мм пластины из низкоуглеродистой стали толщиной не менее 3 мм. Располагают с двух сторон пакета одинаковые заряды взрывчатого вещества и осуществляют одновременную сварку взрывом. Проводят термическую обработку сваренной трехслойной заготовки для образования сплошных интерметаллидных диффузионных прослоек между алюминиевыми слоями и слоем из низкоуглеродистой стали с последующим охлаждением на воздухе, приводящим к самопроизвольному отделению алюминиевых слоев от стального слоя по интерметаллидным диффузионным прослойкам с образованием сплошных покрытий из интерметаллидов системы алюминий-железо. Жаростойкие покрытия с высокими служебными свойствами получают одновременно с двух сторон пластины из низкоуглеродистой стали за одну операцию сварки взрывом. 2 ил., 1 табл., 3 пр.

Способ может быть использован при изготовлении жаростойких деталей энергетических и химических установок. Между биметаллическими пластинами, состоящими из слоя легированной стали и слоя низкоуглеродистой стали, с зазором размещают алюминиевую пластину толщиной 1-1,5 мм. Толщину пластин и сварочные зазоры между пластинами в пакете выбирают из условия получения заданной скорости соударения соединяемых слоев. Осуществляют термическую обработку сваренной пятислойной заготовки. После охлаждения с печью до заданной температуры проводят последующее охлаждение на воздухе, приводящее к самопроизвольному отделению алюминия от стальных слоев по интерметаллидным диффузионным прослойкам. На поверхности слоя из низкоуглеродистой стали каждой из двух биметаллических пластин образуется сплошное жаростойкое покрытие системы алюминий-железо. Способ обеспечивает получение покрытий одновременно на двух биметаллических пластинах при одной операции сварки взрывом. 1 табл., 3 пр.

Изобретение может быть использовано при изготовлении жаростойких деталей энергетических и химических установок. Алюминиевую пластину размещают между пластинами из низкоуглеродистой стали. Сварку взрывом осуществляют при заданной скорости детонации заряда взрывчатого вещества. Высоту заряда взрывчатого вещества и сварочные зазоры между пластинами в пакете выбирают из условия получения заданной скорости соударения пластин. Осуществляют термическую обработку сваренной трехслойной заготовки и охлаждение ее с печью до заданной температуры. После выдержки при этой температуре проводят охлаждение на воздухе, приводящее к самопроизвольному отделению алюминия от слоев низкоуглеродистой стали по интерметаллидным диффузионным прослойкам с образованием при этом на поверхности каждой из двух стальных пластин сплошного жаростойкого покрытия системы алюминий-железо. Способ обеспечивает одновременное получение на двух стальных пластинах из низкоуглеродистой стали жаростойких интерметаллидных покрытий при проведении одной операции сварки взрывом. 1 табл., 3 пр.

Изобретение может быть использовано при изготовлении жаростойких деталей энергетических и химических установок. Алюминиевую пластину размещают между пластинами из низкоуглеродистой стали. Полученный трехслойный пакет располагают между пластинами из легированной стали. Полученный пятислойный пакет сваривают взрывом при заданной скорости детонации заряда взрывчатого вещества. Высоту заряда и сварочные зазоры между пластинами в пятислойном пакете выбирают из условия получения заданных скоростей соударения пластин. Проводят термическую обработку сваренной пятислойной заготовки и охлаждение с печью до заданной температуры. Последующее охлаждение на воздухе заготовки приводит к самопроизвольному отделению алюминия от стальных слоев по интерметаллидным диффузионным прослойкам с образованием двух биметаллических пластин. Каждая из полученных пластин состоит из слоя легированной и слоя низкоуглеродистой стали и имеет сплошное жаростойкое покрытие системы алюминий-железо на поверхности слоя из низкоуглеродистой стали. Способ обеспечивает одновременное получение двух биметаллических пластин, состоящих из слоев легированной и низкоуглеродистой стали со сплошными жаростойкими покрытиями на поверхностях слоев из низкоуглеродистой стали при проведении одной операции сварки взрывом. 1 табл., 3 пр.

Изобретение относится к технологии получения покрытий на металлах с помощью энергии взрывчатых веществ (ВВ) и может быть использовано при изготовлении деталей энергетических и химических установок, обладающих повышенной жаростойкостью. Составляют пакет под сварку взрывом с симметричным размещением между двумя алюминиевыми пластинами толщиной 1,5-2 мм пластины из триметалла - пластины из легированной стали с двух сторон плакированной низкоуглеродистой сталью. Толщину упомянутой пластины выбирают не менее 3 мм, толщину ее плакирующих слоев - в пределах 0,3-0,5 мм. С двух сторон пакета на поверхностях алюминиевых пластин располагают одинаковые заряды взрывчатого вещества и осуществляют его сварку взрывом с одновременным инициированием в зарядах процесса детонации. Скорость детонации в каждом заряде взрывчатого вещества равна 2000-2700 м/с, высоту зарядов взрывчатого вещества, а также сварочные зазоры между соединяемыми металлами выбирают из условия получения скорости соударения алюминиевых пластин с плакирующими слоями из низкоуглеродистой стали пластины из триметалла в пределах 370-490 м/с. Термическую обработку сваренной пятислойной заготовки для образования сплошных интерметаллидных диффузионных прослоек между алюминиевыми слоями и слоями из низкоуглеродистой стали проводят при температуре 660-665°С в течение 0,7-1 ч. Затем охлаждают с печью до температуры 640-650°С. Проводят выдержку при этой температуре 2-3 ч с последующим охлаждением на воздухе до самопроизвольного отделения алюминиевых слоев от слоев из низкоуглеродистой стали по интерметаллидным диффузионным прослойкам с образованием при этом на поверхностях слоев из низкоуглеродистой стали пластины из триметалла сплошного жаростойкого покрытия из интерметаллидов системы алюминий-железо. Обеспечивается одновременное получение интерметаллидных покрытий с двух сторон указанной триметаллической пластины, обладающих высокой жаростойкостью, имеющих малую амплитуду шероховатостей, с пониженной склонностью к образованию трещин при теплосменах без использования в технологической схеме дефицитного и дорогостоящего никеля, с сокращением количества операций сварки взрывом до одной. 2 ил., 1 табл., 4 пр.

Изобретение может быть использовано при изготовлении взрывом изделий цилиндрической формы с внутренней полостью, например теплозащитных экранов, деталей термического, химического оборудования. Внутри полостеобразующего элемента в виде титановой трубы с толщиной стенки 3–4 мм размещают соосно центральный полостеобразующий элемент из стекла с толщиной стенки 10-15 мм. Заполняют промежуток между ними водным наполнителем. После герметизации полученной сборки располагают ее соосно внутри трубчатой оболочки с толщиной стенки 3-4 мм. В зазоре между ними соосно размещают трубчатую биметаллическую прослойку с наружным слоем из меди толщиной 1-1,2 мм и внутренним слоем из ниобия толщиной 0,8-1 мм. Осуществляют сварку взрывом на регламентированных режимах. За один акт взрывного воздействия получают цельносварное композиционное изделие цилиндрической формы с внутренней полостью без нарушений осевой симметрии и герметичности металлических слоев. Изделие имеет низкое гидравлическое сопротивление внутренней полости в расчете на единицу длины изделия при пропускании через нее жидкого теплоносителя и высокое термическое сопротивление его четырехслойной стенки при теплообмене веществ, находящихся в его внутренней полости, с окружающей средой. 3 ил., 1 табл., 3 пр.

Изобретение может быть использовано для изготовления взрывом изделий цилиндрической формы с внутренней полостью, например деталей термического, химического оборудования. Внутри биметаллического полостеобразующего элемента в виде трубы с наружным слоем из никеля и внутренним слоем из алюминия размещают соосно центральный полостеобразующий элемент из стекла. Заполняют промежуток между ними водным наполнителем. После герметизации полученную сборку располагают соосно внутри трубчатой биметаллической оболочки с наружным слоем из алюминия и внутренним слоем из никеля. В зазоре между ними соосно размещают трубчатую промежуточную прослойку из меди. Осуществляют сварку взрывом с последующим отжигом сваренной заготовки. За один акт взрывного воздействия с последующим отжигом сваренной заготовки получают цельносварное композиционное изделие с внутренней полостью с осевой симметрией, имеющее высокую жаростойкость его поверхностей в окислительных газовых средах и низкое термическое сопротивление его многослойной стенки при теплообмене нагретых газов, подаваемых во внутреннюю полость изделия, с окружающей средой. 3 ил., 1 табл., 4 пр.

Изобретение может быть использовано для изготовления изделий цилиндрической формы с внутренней полостью с помощью энергии взрыва. Внутри биметаллического полостеобразующего элемента в виде трубы с наружным слоем из никеля и внутренним слоем из алюминия размещают соосно центральный полостеобразующий элемент из стекла. Заполняют промежуток между ними водным наполнителем. После герметизации полученную сборку располагают соосно внутри трубчатой биметаллической оболочки, наружный слой которой выполнен из титана и внутренний из ниобия. В зазоре между ними соосно размещают трубчатую промежуточную прослойку из меди и осуществляют сварку взрывом с последующим отжигом сваренной заготовки. Полученное цельносварное композиционное изделие с внутренней полостью с осевой симметрией имеет высокое качество сварных соединений, обладает высокой жаростойкостью его внутренней поверхности в окислительных газовых средах и коррозионной стойкостью его наружной поверхности при теплообмене с окружающей средой нагретых газов, подаваемых во внутреннюю полость изделия. 3 ил., 1 табл., 4 пр.

Изобретение относится к технологии получения изделий цилиндрической формы с помощью энергии взрыва и может быть использовано для изготовления изделий с внутренней полостью, например теплозащитых экранов, деталей термического, химического оборудования. В способе берут биметаллический полостеобразующий элемент в виде трубы с наружным слоем толщиной 1,5-2,5 мм из меди, с внутренним слоем толщиной 3,5-5 мм из коррозионностойкой аустенитной стали и размещают внутри него соосно центральный полостеобразующий элемент из стекла с толщиной стенки 10-15 мм и с наружным диаметром, меньшим на 2-4 мм внутреннего диаметра биметаллического полостеобразующего элемента, заполняют промежуток между ними водным наполнителем, после герметизации полученную сборку располагают соосно внутри трубчатой оболочки с толщиной стенки 2-4 мм, в зазоре между ними соосно размещают трубчатую промежуточную прослойку из ниобия с толщиной стенки 0,8-1,2 мм и осуществляют сварку взрывом на регламентированных режимах. В результате за один акт взрывного воздействия получают цельносварное композиционное изделие цилиндрической формы с внутренней полостью без нарушений осевой симметрии и герметичности металлических слоев. 3 ил., 1 табл., 3 пр.

Изобретение относится к технологии получения изделий цилиндрической формы с помощью энергии взрыва и может быть использовано для изготовления изделий с внутренней полостью, например теплозащитых экранов, деталей термического, химического оборудования. В предлагаемом способе берут биметаллический полостеобразующий элемент в виде трубы с наружным слоем толщиной 0,8-1,2 мм из ниобия, с внутренним слоем толщиной 4-5 мм из титана и размещают внутри него соосно центральный полостеобразующий элемент из стекла с толщиной стенки 10-15 мм и с наружным диаметром, меньшим на 2-4 мм внутреннего диаметра биметаллического полостеобразующего элемента, заполняют промежуток между ними водным наполнителем, после герметизации полученную сборку располагают соосно внутри трубчатой биметаллической оболочки, выполненной с наружным слоем толщиной 3-4 мм из титана, с внутренним слоем толщиной 0,8-1,2 мм из ниобия, в зазоре между ними соосно размещают трубчатую промежуточную прослойку из меди с толщиной стенки 1,5-2,5 мм и осуществляют сварку взрывом на регламентированных режимах. В результате за один акт взрывного воздействия получают цельносварное композиционное изделие цилиндрической формы с внутренней полостью, без нарушений осевой симметрии и герметичности металлических слоев. 3 ил., 1 табл., 3 пр.

Изобретение относится к технологии получения изделий цилиндрической формы с помощью энергии взрыва и может быть использовано для изготовления изделий с внутренней полостью, например, теплозащитых экранов, деталей термического, химического оборудования. В способе берут биметаллический полостеобразующий элемент в виде трубы с наружным слоем толщиной 0,8-1,2 мм - из ниобия, с внутренним слоем толщиной 4-6 мм - из титана и размещают внутри его соосно центральный полостеобразующий элемент из стекла с толщиной стенки 10-15 мм и с наружным диаметром, меньшим на 2-4 мм внутреннего диаметра биметаллического полостеобразующего элемента, заполняют промежуток между ними водным наполнителем. После герметизации полученную сборку располагают соосно внутри трубчатой биметаллической оболочки, выполненной с наружным слоем толщиной 1,5-2,5 мм - из алюминия и с внутренним слоем толщиной 1,2-1,6 мм - из никеля, в зазоре между ними соосно размещают трубчатую промежуточную прослойку из меди с толщиной стенки 1,5-2,5 мм, осуществляют сварку взрывом с последующим отжигом сваренной заготовки на регламентированных режимах. В результате за один акт взрывного воздействия с последующим отжигом получают цельносварное композиционное изделие цилиндрической формы с внутренней полостью, без нарушений осевой симметрии и герметичности металлических слоев. 3 ил., 2 табл., 3 пр.

Изобретение может быть использовано при изготовлении трехслойных композиционных изделий с плоскими наружными поверхностями и со сквозными внутренними полостями прямоугольного сечения, например деталей термического и химического оборудования, пуансонов для горячего прессования пластмасс и т.п. Медная пластина выполнена с внутренними полостями, заполненными удаляемым после сварки взрывом легкоплавким металлом. Составляют трехслойный пакет с размещением между пластинами из титана упомянутой медной пластины. Располагают на поверхностях титановых пластин стальные защитные прослойки с зарядами взрывчатого вещества и осуществляют сварку взрывом титановых пластин с медной. Удаляют легкоплавкий металл из внутренних полостей медной пластины и проводят отжиг сваренной трехслойной заготовки для образования износостойкого покрытия на поверхности ее медного слоя. Полученное изделие с покрытием с двух его сторон в виде диффузионного интерметаллидного слоя из титана и меди обладает высокой прочностью при сжимающих и изгибающих нагрузках и пониженным термическим сопротивлением перемычек между смежными полостями. 1 з.п. ф-лы, 4 ил., 1 табл., 4 пр.

Изобретение может быть использовано при изготовлении двухслойных композиционных изделий с плоскими наружными поверхностями и со сквозными внутренними полостями прямоугольного сечения, например, деталей термического и химического оборудования, пуансонов для горячего прессования пластмасс и т.п. Медная пластина выполнена с внутренними полостями, заполненными удаляемым после сварки взрывом легкоплавким металлом. Над поверхностью медной пластины размещают пластину из титана. Располагают на поверхности титановой пластины стальную защитную прослойку с зарядом взрывчатого вещества и осуществляют сварку взрывом титановой пластины с медной. Удаляют легкоплавкий металл из внутренних полостей медной пластины и проводят отжиг сваренной двухслойной заготовки для образования износостойкого покрытия на поверхности ее медного слоя. Полученное изделие с наружным покрытием в виде диффузионного интерметаллидного слоя из титана и меди обладает высокой прочностью при сжимающих и изгибающих нагрузках и пониженное термическое сопротивление перемычек между смежными полостями. 1 з.п. ф-лы, 4 ил., 1 табл., 4 пр.

Изобретение может быть использовано при изготовлении трехслойных композиционных изделий с плоскими наружными поверхностями и со сквозными внутренними полостями прямоугольного сечения, например деталей термического и химического оборудования, пуансонов для горячего прессования пластмасс и т.п. Медная пластина выполнена с внутренними полостями, заполненными удаляемым после сварки взрывом легкоплавким металлом. Над поверхностью медной пластины размещают пластину из титана. Располагают на поверхности титановой пластины стальную защитную прослойку с зарядом взрывчатого вещества и осуществляют сварку взрывом титановой пластины с медной. Составляют пакет из полученной двухслойной заготовки и пластины из аустенитной стали и также сваривают их взрывом. Удаляют легкоплавкий металл из внутренних полостей медной пластины и проводят отжиг сваренной трехслойной заготовки для образования износостойкого покрытия на поверхности ее медного слоя. Полученное изделие с наружным покрытием в виде диффузионного интерметаллидного слоя из титана и меди обладает высокой прочностью при сжимающих и изгибающих нагрузках и пониженное термическое сопротивление перемычек между смежными полостями. 2 з.п. ф-лы, 4 ил., 1 табл., 4 пр.

Изобретение относится к технологии получения изделий с внутренними полостями с помощью энергии взрыва и может быть использовано при изготовлении, например, деталей термического и химического оборудования и т.п. Составляют трехслойный пакет с размещением между пластинами из титана медной пластины с соотношением толщин слоев титан-медь-титан 1:(0,75-1,0):1 при толщине слоя титана, равной 1-1,2 мм. Слой титана устанавливают со сварочным зазором над нижней медной пластиной. При этом медную пластину выполняют с цилиндрическими внутренними полостями, заполненными удаляемым после сварки взрывом легкоплавким металлом. На поверхности верхней титановой пластины располагают заряд взрывчатого вещества и осуществляют сварку взрывом полученной сборки. Удаляют легкоплавкий металл из внутренних полостей и проводят отжиг сваренной заготовки для образования сплошных диффузионных интерметаллидных прослоек между титаном и медью при температуре, превышающей температуру контактного плавления меди и титана. Техническим результатом является создание нового технологического цикла получения композиционных изделий с внутренними полостями сваркой взрывом. 1 з.п. ф-лы, 1 табл., 4 ил.

Изобретение может быть использовано для получения сваркой взрывом композиционных материалов с особыми тепловыми свойствами, например, при изготовлении теплообменной аппаратуры, электроэнергетических установок и т.п. Между пластинами из титана размещают медную пластину с заданным соотношением толщин слоев. Осуществляют сварку взрывом полученной сборки при скорости детонации заряда ВВ 1970-2400 м/с. Высоту заряда ВВ и величину сварочных зазоров между свариваемыми пластинами выбирают из условия получения скорости соударения верхней титановой пластины с медной в пределах 560-715 м/с, медной пластины с нижней титановой - 535-640 м/с, нижней титановой пластины с нижней медной - 410-470 м/с. Проводят отжиг сваренной заготовки для образования сплошных интерметаллидных прослоек между титаном и медью при температуре, превышающей на 25-125°C температуру контактного плавления меди и титана, в течение 1-5 мин с последующим охлаждением на воздухе. Полученный композиционный материал медь-титан обладает высоким термическим сопротивлением теплозащитных интерметаллидных прослоек и теплопроводностью отдельных металлических слоев при сокращении времени на формирование единицы толщины теплозащитных интерметаллидных прослоек за счет высокой скорости их роста в процессе изготовления композиционного материала. 3 ил., 1 табл., 3 пр.

Изобретение может быть использовано для получения сваркой взрывом композиционных материалов с особыми тепловыми свойствами, например, при изготовлении теплообменной аппаратуры, электроэнергетических установок и т.п. Составляют два трехслойных пакета с размещением в каждом из них между пластинами из титана медной пластины с заданным соотношением толщин слоев титан-медь-титан. Размещают между пакетами симметрично со сварочными зазорами медную пластину. Осуществляют сварку взрывом полученной сборки путем одновременного инициирования взрыва зарядов взрывчатого вещества, имеющих скорость детонации 1970-2400 м/с, при заданных скоростях соударения свариваемых пластин. Проводят отжиг сваренной заготовки для образования сплошных теплозащитных интерметаллидных прослоек между титаном и медью при температуре, превышающей на 25-125°С температуру контактного плавления меди и титана, в течение 1-5 мин с последующим охлаждением на воздухе. В полученном материале слои из титана и теплозащитные интерметаллидные прослойки, имеющие высокое термическое сопротивление, располагаются с двух сторон от центрального медного слоя. Материал обладает высокой теплопроводностью отдельных металлических слоев при значительном сокращении времени формирования единицы толщины теплозащитных интерметаллидных прослоек при его изготовлении. 3 ил., 1 табл., 3 пр.

 


Наверх