Патенты автора Щерба Виктор Евгеньевич (RU)

Изобретение относится к области машин объемного действия поршневого типа и может быть использовано при создании высокоэффективных поршневых машин малой и средней производительности с автономной жидкостной системой охлаждения. Компрессор содержит рабочую полость (1) цилиндра (2), полость всасывания (3) и полость нагнетания (4) с обратными самодействующими клапанами (5) и (6), рубашку охлаждения (7), отдельную емкость (8), частично заполненную жидкостью, которая соединена каналами (9) и (10), с клапанами (11) и (12) и с рубашкой (7), соединенной с дополнительной полостью всасывания (15) клапаном (16). Дроссельное отверстие (17) соединяет полость (15) через полость (3) с рабочей полостью (1). При возвратно-поступательном движении поршня (18) в процессе сжатия-нагнетания часть газа через отверстие (17) поступает в полость (15), давит на жидкость, и она через клапан (12) истекает в емкость (8) через рубашку (7). В процессе всасывания в полости (15) возникает разрежение, и жидкость через рубашку (7) движется в обратном направлении. Снижаются массогабаритные характеристики, повышается рабочий диапазон. 4 з.п. ф-лы, 7 ил.

Изобретения относятся к машиностроению. Способ работы системы жидкостного охлаждения машины объемного действия заключается в попеременной подаче охлаждающей жидкости и рабочего тела в цилиндр машины. При этом охлаждающую жидкость подают в цилиндр при достижении его температуры заданного критического значения и после остывания цилиндра переводят машину в основной режим сжатия и нагнетания рабочего тела. Также раскрыта машина объемного действия. Технический результат заключается в снижении затрат механической энергии на охлаждение, а также обеспечении нормального теплового режима работы машины в условиях экстремально высоких температур окружающей среды. 2 н. и 6 з.п. ф-лы, 9 ил.

Изобретение относится к области гидравлических машин и может быть использовано при создании высокопроизводительных компактных насосов низкого и среднего давления. Роторная машина объемного действия содержит ротор 1 с зубом 2, жестко соединенный с приводным валом 3 и размещенный в цилиндре 4 с всасывающим окном 5 и нагнетательным клапаном 6, торцевые крышки 8 и 13, плиту 12, вместе с цилиндрической поверхностью ротора 1, отделяющую клапан 6 от окна 5, устройство для прохода зуба 2 в зоне окна 5 и клапана 6. Устройство для прохода зуба 2 выполнено в виде направляющего зуб 2 вдоль радиуса ротора 1 фигурного паза 7 в крышке 8. Форма паза 7 выполнена таким образом, что при подходе зуба 2 к клапану 6 паз 7 отклоняется от формы окружности и плавно переходит в прямую линию, параллельную плоскости плиты 12, а после прохода зуба 2 зоны между клапаном 6 и окном 5 паз 7 плавно переходит из прямой линии в окружность. Зуб 2 выполнен с возможностью радиального перемещения в пазу 9 ротора 1 и снабжен выступом, входящим в зацепление с наружной поверхностью паза 7. Изобретение направлено на снижение материалоемкости и габаритов машины, снижение технологических затрат на ее изготовление. 4 ил.

Изобретение относится области гидравлических машин и может быть использовано при создании высокопроизводительных компактных роторных насосов низкого и среднего давления. Прямозубая машина объемного действия содержит цилиндр 5 с всасывающим окном 10 и нагнетательным клапаном 11, перекрытый торцевыми крышками 6 и 7, ротор 1 с зубом 2, жестко соединенный с приводным валом 4 и размещенный в цилиндре 5, и устройство для прохода зуба 2 в зоне окна 10 и клапана 11, выполненное в виде кулачка 15, жестко соединенного с валом 4, и заслонки 12, размещенной в пазу 13 с возможностью перемещения вдоль него и подпружиненной в сторону цилиндра 5. Паз 13 расположен между окном 10 и клапаном 11, а его ось выполнена пересекающейся с окружностью цилиндра 5. Заслонка 12 имеет выступ 14, контактирующий с кулачком 15. Выступ 14 и кулачок 15 размещены в полости проставки, установленной между крышкой 7 и цилиндром 5. Изобретение направлено на снижение материалоемкости и габаритов машины, снижение технологических затрат на ее изготовление. 1 з.п. ф-лы, 7 ил.

Изобретение относится к области гидравлических машин и может быть использовано при создании высокопроизводительных компактных роторных насосов низкого и среднего давления. Прямозубый насос состоит из ротора (1) с зубом (2), приводного вала (3), цилиндра (4) с торцовыми крышками (5) и (6). Цилиндр (4) снабжен всасывающим окном (8) и нагнетательным клапаном (9), запорным штырем (10), поджатым пружиной (11), упором (12) в виде ступеньки на окружности (7) цилиндра (4). Штырь (10) расположен тангенциально к окружности (7) цилиндра (4). При вращении ротора (1) боковая поверхность зуба (2) имеет возможность контактировать с торцевой поверхностью штыря (10). Изобретение направлено на уменьшение массы и габаритов насоса. 2 з.п. ф-лы, 10 ил.

ГИДРОДИОД // 2760511
Изобретение относится к области управления или регулирования расхода жидкости и может быть использовано в различных гидравлических системах, в которых необходимо регулировать параметры потоков при низких и средних давлениях, в том числе в качестве запорных органов гидравлических машин периодического действия (например, в насосах). Гидродиод имеет корпус, содержащий верхнюю (1) и нижнюю (2) плиты и боковые стенки (3) и (4), стянутые резьбовыми креплениями (5) с образованием канала прямоугольного сечения (6) для прохода жидкой среды. В этом канале вдоль него на двух его противоположных сторонах (плитах (1) и (2)) в пазах (7) установлены пары жестких пластин (8), наклоненных под углом α в сторону прямого потока и имеющие длину вылета l. Расстояние между двумя пластинами вдоль канала (6) равно l∙cos α. Количество пар пластин лежит в диапазоне 4÷8. Угол наклона - в диапазоне 20÷40 градусов. При прямом прохождении потока он практически не встречает сопротивления, и расход в прямом потоке практически не отличается от расхода через канал, проходное сечение которого равно площади канала (6), свободной от пластин (8). При обратном течении часть потока отклоняется пластинами (8) в сторону поверхности плит (1) и (2), упирается в карман между пластинами с образованием обратного течения и вихря, препятствующих движению жидкости, из-за чего гидравлическое сопротивление гидродиода существенно возрастает. Снижаются габариты, масса и затраты на изготовление, повышается диодность. 2 з.п. ф-лы, 8 ил.

Изобретение относится к поршневым машинам и системам их охлаждения. Поршневой двухцилиндровый компрессор содержит цилиндры 1 и 2 с всасывающими и нагнетательными клапанами 3, 4 и 5, 6, рабочие полости 7 и 8, полости всасывания 9 и 10, полость нагнетания 11, общую жидкостную рубашку 12 охлаждения и поршни 13 и 14, первую и вторую емкости 15 и 16, частично наполненные жидкостью. Емкость 15 имеет всасывающий и нагнетательный клапаны 17 и 18, соединенные каналами 19 и 20 с рубашкой 12, которая соединена с емкостью 16 каналом 21. На соединительных каналах 22 и 23 установлены регулируемые гидравлические сопротивления. На канале 26 установлен теплообменник 26. При возвратно-поступательном движении поршней 13 и 14, положение которых смещено на 180 градусов, происходит изменение объема полостей 7 и 8, в результате чего газ всасывается через клапаны 3 и 4, сжимается и нагнетается через клапаны 5 и 6 в полость 11 и далее поступает потребителю. Кроме того, между емкостями 15 и 16 попеременно возникает перепад давления, под которым жидкость совершает круговое движение, отводя теплоту от цилиндров 1 и 2. Изобретение направлено на повышение интенсивности охлаждения и диапазона регулирования температуры газа. 1 ил.

Изобретение относится к области энергетических машин и касается преимущественно поршневых компрессоров и систем их охлаждения. Поршневой двухцилиндровый компрессор с автономным жидкостным рубашечным охлаждением содержит первый (1) и второй (2) цилиндры с всасывающими (3, 4) и нагнетательными (5, 6) клапанами, соединяющими рабочие полости (7, 8) цилиндров (1, 2) через всасывающий (12) и нагнетательный (13) трубопроводы и соответственно полости всасывания и нагнетания (10, 11) с источником и потребителем газа. Цилиндры (1, 2) имеют жидкостную рубашку (14) охлаждения и поршни (15, 16), соединенные с механизмом привода. Всасывающие полости обоих цилиндров объединены в единую всасывающую полость (9), которая соединена с герметичной емкостью (24), наполненной жидкостью. Емкость (24) имеет всасывающий (26) и нагнетательный (27) клапаны, соединенные с жидкостной рубашкой (14) охлаждения, соединенной с дополнительной емкостью (31), которая заполнена жидкостью и имеет отверстие (32), соединяющее полость этой емкости (31) с атмосферой. Всасывающий трубопровод (12) снабжен заслонкой (33), имеющей возможность частичного перекрытия этого трубопровода (12). Заслонка (33) снабжена устройством для ее перемещения в направлении перекрытия всасывающего трубопровода (12), установленным в верхней части (35) цилиндров (1,2). Также раскрыты варианты поршневых двухцилиндровых компрессоров. Технический результат заключается в снижении работы на перемещение охлаждающей жидкости. 3 н. и 7 з.п. ф-лы, 15 ил.

Изобретение относится к двигателестроению, в частности к системам подачи топлива в двигатель внутреннего сгорания в условиях низких температур окружающей среды, и может быть использовано в бензиновых и дизельных ДВС. Система подачи топлива содержит топливный насос низкого давления, соединенный с впускным каналом пусковой форсунки, выпускное отверстие форсунки и впускной трубопровод. Между выпускным отверстием пусковой форсунки и этим трубопроводом установлена рабочая камера компрессора объемного действия поршневого или роторного типа. Форсунка включается при низкой температуре двигателя, впрыскивает топливо в рабочую камеру компрессора, где топливо испаряется и вместе с сжатым воздухом поступает в впускной трубопровод. 8 з.п. ф-лы, 12 ил.

Изобретение относится к области гидропневматической техники и может быть использовано при создании компактных и высокоэкономичных поршневых компрессоров высокого давления. Способ работы агрегата состоит в том, что при подаче жидкости в полость газового цилиндра ее живое сечение сначала увеличивается от минимального до достижения поршнем насоса середины хода, а затем уменьшается до величины, соответствующей проходному сечению нагнетательного газового клапана. Перед сжатием газа в газовой полости его могут предварительно сжимать в дополнительной газовой полости. Гидропневматический агрегат содержит поршневой жидкостный насос 1 с рабочей полостью 2 и кривошипно-шатунным приводом 3 поршня 4. Рабочая полость 2 соединена с теплообменником 6 и далее с газовым цилиндром 7 с всасывающими 8 и нагнетательными 9 клапанами. Рабочая полость 10 газового цилиндра 7 выполнена в виде симметричного относительно его поперечного сечения веретена, нижний конец 11 которого непосредственно через канал 5 соединен с рабочей полостью 2 жидкостного насоса 1, а клапаны 8 и 9 установлены в зоне верхнего конца 12 рабочей полости 10. При изготовлении поршня дифференциальным образуется дополнительная компрессорная полость, сжимающая газ, который потом дожимается в газовой полости жидкостью. Повышается эффективность процесса сжатия, ликвидируются утечки газа. 4 н. и 13 з.п. ф-лы, 16 ил.

Изобретение относится к области конструкции и эксплуатации транспортных средств, преимущественно автомобилей. Устройство для выработки энергии содержит турбину, которая устанавливается на крыше автомобиля и имеет вертикальную ось вращения, а ее лопасти представляют собой пластины, выполняющие функцию обратных самодействующих клапанов. Преобразователь энергии вращения в тепловую энергию установлен изнутри на крыше салона, выполнен в виде пары трения подвижного и неподвижного дисков или в виде жидкостного насоса, теплота трения дисков или жидкости переносится в салон автомобиля за счет работы крыльчатки, которая прокачивает воздух через преобразователь. Преобразование вращения диска в электрический ток производится за счет установленных на нем магнитов, около установленных в неподвижном корпусе электрических обмоток. Достигается обогрев салона автомобиля при дефиците или отсутствии топлива, а также при невозможности пустить двигатель вследствие его неисправности. 6 н. и 1 з.п. ф-лы, 14 ил.

Предложенный способ работы заключается в использовании столба жидкости для сжатия газа во второй ступени, при этом давление жидкости создается в подпоршневой полости первой ступени. Компрессор содержит приводной вал (1) и картер (2) с крейцкопфным кривошипно-шатунным механизмом привода, состоящим из кривошипа (3), шатуна (4), пальца (5) и крейцкопфа (6). Цилиндр (7) первой ступени установлен на картере (2), содержит поршень (8), который делит цилиндр (7) на две части, надпоршневая полость (9) является рабочей, а подпоршневая полость (12) заполнена жидкостью и соединена с нижней частью цилиндра (13) второй ступени, имеющей рабочую полость (14), через гибкий шланг (15) высокого давления. Цилиндр (13) второй ступени закреплен на картере (2) своей верхней частью через шарнир (16) и стойку (17). Цилиндры снабжены самодействующими всасывающими (18), (19) и нагнетательными (20), (21) клапанами и соединены между собой теплообменником (22). Клапан (18) соединен с источником газа низкого давления, клапан (21) соединен с потребителем газа высокого давления. При возвратно-поступательном движении поршня (8) газ сжимается в цилиндре (7) первой ступени и подается в цилиндр (13) второй ступени, где дожимается в полости (14) жидкостью, поступающей из подпоршневой полости (12) первой ступени при ходе поршня (8) вниз. Сокращаются масса и габариты компрессора, появляется возможность увеличить давление нагнетания второй ступени. Изобретение относится к области поршневых машин и может использоваться при создании компрессоров, к которым предъявляются требования высокой компактности и надежности при сжатии газов до высоких давлений. 4 н. и 7 з.п. ф-лы, 11 ил.

Изобретение относится к поршневым энергетическим машинам объемного действия и может быть использовано при создании компактных агрегатов, подающих потребителю одновременно или попеременно сжатый воздух и жидкость под давлением. Машина содержит картер 1 с кривошипно-шатунным механизмом привода 2, тронковый поршень 5, газовый 6 и жидкостный 7 цилиндры с всасывающими 8 и 9 и нагнетательными 10 и 11 клапанами в полостях всасывания 12 и 13 и нагнетания 14 и 15, соединенные с линиями всасывания 16 и 17 и нагнетания 18 и 19 газа и жидкости. Жидкостный цилиндр 7 совмещен с рубашкой охлаждения 21. Поршень 5 имеет кольцевой выступ 22, входящий в эту рубашку. Клапанная коробка 20 содержит выступ 23, сопряженный с зазором 24 с внутренней поверхностью кольцевого выступа 22 поршня 5. Повышается КПД машины, снижается трудоемкость ее изготовления и ремонта. 4 з.п. ф-лы, 4 ил.

Изобретение относится к области энергетики, гидравлических и пневматических устройств, в частности для сжатия и перемещения газов и жидкостей. Машина содержит цилиндр 1 и размещенный в нем с радиальным зазором δ1 в верхней части дифференциальный поршень 2 со штоком 3 с образованием верхней компрессорной 4 и нижней насосной 5 полостей. Полость 4 имеет мертвый объем VM и соединена с источником и потребителем сжатого газа соответственно через всасывающие 6 и нагнетательные 7 газовые клапаны. Полость 5 - с источником и потребителем жидкости через всасывающие 8 и нагнетательные 9 жидкостные клапаны. В зоне полости 5 имеется ступенчатое расширение цилиндра 1 в виде выточки 10 с образованием радиального зазора δ2 большей величины, чем радиальный зазор δ1. При работе машины выполняется соотношение VM=V1-V2, где VM - мертвый объем полости 4, V1 - объем жидкости, перетекшей из полости 5 в полость 4 в процессе сжатия и нагнетания жидкости; V2 - объем жидкости, перетекшей из полости 5 в полость 4 в процессе сжатия и нагнетания газа. Над поршнем 2 всегда присутствует слой жидкости, причем толщина этого слоя в конце процесса сжатия газа равна линейному мертвому объему LM, что дает возможность получать высокое давление в одной ступени при полном отсутствии утечек. Постоянная циркуляция жидкости в зазоре между поршнем 2 и цилиндром 1 снижает их температуру. Позволяет использовать большие зазоры между поршнем 2 и цилиндром 1, т.е. исключить возможность заклинивания поршня 2 при пуске машины, организовать хорошее охлаждение газа и повысить экономичность машины. 5 ил.

Изобретение относится к области энергетики и касается гибридных поршневых машин, предназначенных для попеременного сжатия жидкости и газа. Машина состоит из поршня 1 с механизмом привода 2 кривошипно-шатунного типа, приводимого в движение валом 3. Цилиндр 4 имеет самодействующие обратные клапаны 5 и 6, которые с помощью золотника 7 подключаются либо к линии всасывания 10 и линии нагнетания 12 газа, либо к линии всасывания 11 и линии нагнетания 12 жидкости. Стержень 9 золотника перемещается электромагнитом 37, который включается или выключается с помощью контактов 41 и 42, которые замыкаются и размыкаются кулачком 17 строго при положении поршня 1 в верхней мертвой точке. Кулачок 17 закреплен на шестерне 22, которая получает вращение от шестерни 21, закрепленной на валу 3. Возврат стержня 9 происходит при размыкании контактов 41 и 42 под действием пружины 38. Способ работы состоит в том, что изменение сжимаемой рабочей среды происходит при нахождении поршня в верхней мертвой точке после окончания процесса нагнетания. Снижается содержание газа в сжимаемой жидкости и наоборот, расширяется диапазон отношений производительности по газу и жидкости. Существенно снижается загрязнение сжимаемой среды, повышается кпд в связи с хорошим охлаждением цилиндропоршневой группы и отсутствием трения в паре поршень-цилиндр. 3 н. и 8 з.п. ф-лы, 11 ил.

Изобретение относится к области поршневых гибридных энергетических машин и может быть использовано при одновременном или попеременном сжатии жидкостей и газов при большой разности давлений без их взаимного загрязнения. Способ работы машины заключается в том, что при одновременном сжатии жидкости и газа зазор между поршнем и цилиндром увеличивают или уменьшают в зависимости от того, какое рабочее тело имеет большее давление. Машина состоит из цилиндра 1, выполненного в виде усеченного конуса и размещенного в нем с зазором поршня 4, имеющего аналогичный по углу образующей конус. Поршень 4 делит цилиндр 1 на газовую 2 и жидкостную 3 смежные полости, которые снабжены всасывающими 6 и 8 и нагнетательными 7 и 9 клапанами. При возвратно-поступательном движении поршня 4 объем полостей 2 и 3 изменяется, в результате чего происходит всасывание газа и жидкости через клапаны 6 и 8 и их нагнетание через клапаны 7 и 9. При сжатии одной среды до более высокого по сравнению с другой средой давления зазор между поршнем 4 и цилиндром 1 уменьшается, не давая сжимаемой до более высокого давления среде проникать через зазор между поршнем 4 и цилиндром 1 в смежную полость в большом количестве. В другом варианте машины используются активные уплотнения на поршне 4, которые уменьшают зазор между поршнем 4 и цилиндром 1 при сжатии среды с большим давлением. Улучшается эффективность работы. 4 н. и 2 з.п. ф-лы, 6 ил.

Изобретение относится к гибридным машинам объемного действия. Машина содержит цилиндр (1), ротор (5) с двумя пластинами (7), делящими цилиндр (1) на две полости - компрессорную (9) с всасывающим окном (11) и нагнетательным клапаном (12) и насосную (10) с всасывающим клапаном (13) и нагнетательным клапаном (14). Клапан (13) соединен с гидробаком (50), а клапан (14) с золотником (17) и далее с золотником (47) и через него - с потребителем жидкости. Окно (11) соединено с источником газа, а клапан (12) - с золотником (37) и далее - с газовым ресивером (28) и через него - с потребителем газа. Управление золотника (17) осуществляется перепадом давления между давлением газа, которое подводится к нему каналом (18), и давлением жидкости, которое подводится к нему каналом (15). Управление золотником (37) осуществляется разностью усилий между пружиной (42) и усилием от давления в ресивере (28). Управление золотником (47) производится вручную с помощью рукоятки (58). Работа золотника (17) обеспечивает подачу жидкости или газа в полости (6). Работа золотников (37) и (47) позволяет обеспечить работу машины в режиме «насос», «насос-компрессор» и «компрессор» при минимальном участии оператора. Изобретение направлено на упрощение управлением машины и снижение вероятности ошибки при управлении. 2 ил.

Изобретение относится к поршневым энергетическим машинам объемного действия и может быть использовано при создании безвибрационных компрессоров, насосов, двигателей внутреннего сгорания, а также гибридных машин - насос-компрессоров и мотор - насос-компрессоров. Машина состоит из корпуса 1, в котором размещены газовые цилиндры 2 и 3 с рабочими поршнями 8 и 9 и с самодействующими всасывающими 4 и 5 и нагнетательными 5 и 6 клапанами. Через штоки 10 и 11 рабочие поршни 8 и 9 соединены с кривошипно-ползунным механизмом 12, который преобразует синхронное и противоположно направленное вращательное движение валов 19 и 20 в возвратно-поступательное движение поршней 8 и 9. С помощью реечного зацепления это движение передается дополнительным поршням 23 и 24, которые в цилиндрах 25 и 26 сжимают и подают жидкость сначала в рубашки охлаждения 51 и 52 цилиндров 2 и 3, а затем потребителю. Цилиндры 25 и 26 снабжены самодействующими всасывающими 35 и 36 и нагнетательными 37 и 38 клапанами. Дополнительные поршни 23 и 24 выполняют функции противовесов, полностью компенсирующих силы инерции движения поршней 8 и 9 с механизмом 12. Повышается удельная мощность машины за счет увеличения отношения мощности к массе машины. Уравновешивание сил инерции неравномерного движения основного или основных поршней достигается за счет использования дополнительных поршней, двигающихся в противофазе с основным или основными поршнями. Увеличивается производительность машины. 6 з.п. ф-лы, 10 ил.

Изобретение относится к области энергетических машин и касается гибридных поршневых машин объемного действия, используемых в качестве насос-компрессоров, к которым предъявляются жесткие требования по массогабаритным характеристикам, экономичности и большому диапазону давлений нагнетания. Машина содержит цилиндр 1 с газовой 2 и жидкостной 3 полостями, соединенными соответственно с источниками и потребителями газа и жидкости через обратные самодействующие клапаны 4, 5, 6 и 7. Поршень 8 соединен пальцем 9 с механизмом привода, содержащим шатун 10 и коленчатый вал 11 с кривошипом 12. Цилиндр 1 имеет рубашку охлаждения 14. Жидкостная полость 3 образована с помощью ступеньки 15 на цилиндре 1 и ступеньки 16 на поршне 8. Цилиндр 1 установлен на картере 19, который частично заполнен жидкой смазкой 20. Снижается масса машины, повышается технологичность ее изготовления и диапазон рабочих давлений. 1 з.п. ф-лы, 3 ил.

Группа изобретений относится к области транспортных средств с тормозными системами, содержащими пневматические усилители тормозов. Способ управления работой гидравлической тормозной системы транспортного средства заключается в том, что при неработающем двигателе автомобиля его вакуумную камеру отсоединяют от впускного трубопровода двигателя внутреннего сгорания и соединяют с вакуумным насосом, электрический привод которого подключают к бортовой электрической сети автомобиля или к дополнительному источнику электропитания. В подкапотном пространстве транспортного средства установлен источник вакуума в виде вакуумного насоса, имеющего вход с возможностью гидравлического подключения к вакуумной камере вакуумного усилителя, и электрический привод, соединенный через выключатель с бортовой электрической сетью автомобиля или с дополнительным источником электропитания. Достигается повышение безопасности движения транспортного средства. 2 н. и 4 з.п. ф-лы, 3 ил.

Изобретение относится к области энергетических машин и касается поршневых машин и систем их охлаждения, и может быть использовано при создании поршневых компрессоров с повышенной экономичностью за счет организации автономной энергосберегающей системы охлаждения цилиндропоршневой группы. Компрессор состоит из цилиндров 1, 2 с рубашкой охлаждения 14, поршней 15, 16, которые приводятся в движение коленчатым валом 19 через шатуны 17, 18. Газ всасывается в полости 7, 8 цилиндров 1, 2 через линию всасывания 12, общую для цилиндров полость всасывания 9 и обратные самодействующие клапаны 3, 4, сжимается и нагнетается потребителю через обратные самодействующие клапаны 5, 6, полости нагнетания 10, 11 и линию нагнетания 13. Рубашка 14 соединена через теплообменники 28, 29 и обратные клапаны 26, 27 с герметичной емкостью 24, соединенной каналом 25 с полостью 9, а также через канал 30 с емкостью 1, сообщенной с атмосферой отверстием 32. Повышается экономичность компрессора без дополнительных затрат энергии. 3 з.п. ф-лы, 5 ил.

Изобретение относится к области энергетики и может быть использовано при создании экономичных поршневых компрессоров малой и средней производительности с автономным жидкостным охлаждением. Способ работы компрессора заключается в том, что величину дополнительного объема, напрямую соединенного с полостью нагнетания машины и частично заполненного охлаждающей жидкостью, уменьшают при увеличении давления нагнетания и наоборот увеличивают - при уменьшении давления нагнетания. Компрессор состоит из цилиндра 1 с поршнем 2, рабочей камеры 4, полостей всасывания 6 и нагнетания 9 с клапанами 5 и 8. Полость нагнетания 9 соединена каналом 16 с дополнительным объемом 14, который через нагнетательный клапан 12 соединен с рубашкой охлаждения 11 и через всасывающий клапан 18 - с питающей емкостью 20. При повышении давления нагнетания сверх нормативного плунжер 24 опускают в объем 14 и наоборот. Достигается максимально возможное движение жидкости через систему охлаждения на всех режимах работы машины, что повышает отвод теплоты от цилиндра 1 и повышает экономичность работы компрессора. 2 н. и 1 з.п. ф-лы, 4 ил.

Изобретение относится к области энергетических машин, касается поршневых компрессоров с бесконтактным поршневым уплотнением, предназначенных для сжатия редких газов. Поршневая машина содержит цилиндр 1, размещенный с зазором поршень 2, всасывающий 5 и нагнетательный 6 клапаны. Герметизирующее устройство выполнено в виде содержащей жидкость полости 12 между уплотняющей частью 10 поршня 2 и внутренней поверхностью цилиндра в его нижней части 13. Полость 12 соединена отверстием 14 с бачком 15, наполненным жидкостью, при нахождении поршня в нижней мертвой точке. Обеспечивается полная герметичность цилиндропоршневой группы при бесконтактной работе поршня. 3 з.п. ф-лы, 6 ил.

Изобретение относится к области энергетических машин объемного действия и может быть использовано при создании высокоэффективных источников энергии для одновременного питания пневматического и гидравлического оборудования. Машина состоит и корпуса 1 с цилиндрами 2, 3, с роторами 10, 11 с выступами 12, 13, которые приводятся во вращение валами 4, 6, синхронизированными зубчатым зацеплением 7, 8, 9 и ротора 17 с впадиной 18. В цилиндрах имеются всасывающие окна 27, 29 и нагнетательные клапаны 29, 30. На валу 4 имеется кривошип 33 со штоками 34, 46, на которых шарнирно закреплены поршни 35, 47, установленные в цилиндрах 32, 36 с клапанами 37, 40, 48, 49. В цилиндре 36 имеются перепускные каналы 43 и 45. В канале 43 имеется золотник 44, выступающий в полость цилиндра 36. Всасывающее окно 27 и клапан 37 соединены линией всасывания 39 с источником жидкости 38. Клапаны 29, 40 соединены линией нагнетания 41 с потребителем жидкости 42. Клапан 30 соединен линией нагнетания 50 с теплообменником 51, который соединен с цилиндром 32 через клапан 48. Клапан 49 соединен линией нагнетания 52 с потребителем газа 53. Повышается удельная мощность машины, расширяется область ее применения. Обладает более высокой (ориентировочно на 30-40%) удельной мощностью, что позволяет снизить ее материалоемкость и приведенную стоимость сжатого газа и жидкости под давлением. 2 з.п. ф-лы, 5 ил.

Изобретение относится к энергетическим машинам и может быть использовано при создании высокоэкономичных автономно работающих двухступенчатых компрессоров и гибридных машин - насос-компрессоров с жидкостным охлаждением компрессорных полостей первой и второй ступени. Поршневая двухступенчатая машина состоит из картера 1 с механизмом привода, приводящим в движение поршень 4, который с общим цилиндром образует газовые полости первой ступени 5 и второй ступени 6, а также жидкостную дополнительную ступень 11. Все ступени снабжены всасывающими и нагнетательными клапанами, вокруг газовых ступеней имеются рубашки охлаждения 9, 10. При возвратно-поступательном движении поршня 4 происходит всасывание газа в полость 5 первой ступени, его сжатие и подача во вторую ступень 6, где газ дожимается и подается потребителю. Жидкость всасывается в полость 5 через рубашку 10, сжимается и прокачивается через рубашку 9, чем достигается охлаждение первой 5 и второй 6 ступени и уплотнение зазоров между поршнем и цилиндрами газовых ступеней. Достигается автономное охлаждение машины при сжатии газов, бесконтактное уплотнение поршня и повышение экономичности машины. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области компрессоростроения и может быть использовано при создании поршневых компрессоров, к которым предъявляются высокие требования по ресурсу работы, надежности и экономичности. Компрессор содержит газовый цилиндр 1 с основным поршнем 4, размещенным в цилиндре 1 с зазором 3. Содержит вспомогательный поршень 9 или плунжер с жидкостным цилиндром 10, соединенным с источником жидкости 14 и с жидкостной рубашкой 2, размещенной в газовом цилиндре 1, а через гидравлическую линию - с жидкостной полостью, размещенной в основном поршне 4. Оба поршня или поршень и плунжер, основной и вспомогательный, имеют один механизм привода, содержащий по крайней мере один кривошип 30. Часть гидравлической линии, соединяющей жидкостный цилиндр 10 с жидкостной полостью 2 основного поршня 4, размещена в теле кривошипа. Организуется тщательное охлаждение поршня и цилиндра, уплотнение поршня и смазка под давлением механизма привода. 4 з.п. ф-лы, 8 ил.

Изобретение относится к области энергетических машин объемного действия и может быть использовано при создании гибридов типа «поршневой насос-компрессор». Поршневая машина содержит цилиндр 1, разделенный поршнем 2 на газовую 3 и жидкостную 4 камеры. Они соединены с источником и потребителем газа и жидкости через обратные всасывающие 5 и 6 и нагнетательные 7 и 8 клапаны. В днище поршня 2 напротив всасывающего клапана 5 полости 3 установлен обратный самодействующий жидкостный клапан 9, соединенный через отверстие 10 с камерой 3 и через каналы 11 с камерой 4. Пружина 12 клапана 9 опирается через стакан 13 на регулировочный винт 14. В процессе сжатия и нагнетания жидкости в жидкостной камере 4 за счет протечек жидкости через поршневое уплотнение, над поршнем 2 в газовой камере 3 создают слой жидкости, которую эвакуируют в конце процесса нагнетания газа в жидкостную подпоршневую камеру. К концу процесса нагнетания газа над поршнем 2 остается объем жидкости, превышающий мертвый объем камеры 3. Излишки жидкости истекают в камеру 4 через открывшийся клапан 9. Повышается энергетическая эффективность цикла работы газовой камеры, устраняются условия возникновения гидроудара, расширяется диапазон рабочих давлений жидкостной камеры. 2 н. и 2 з.п. ф-лы, 4 ил.

Изобретение относится к области энергетики и может быть использовано при создании поршневых высокоэффективных машин для сжатия и перемещения газов и жидкостей. Машина содержит цилиндр 1 и размещенный в нем с радиальным зазором 2 поршень 3 с компрессорной 5 и насосной 6 полостями. На цилиндрической поверхности поршня имеется канавка 15, разделяющая его поверхность на две части 16 и 17. Боковые поверхности канавок расположены под острым углом к оси поршня 3 и цилиндра 1 в направлении к компрессорной полости 5. Объем канавки определяется выражением: где V - объем канавки, D - диаметр поршня, δ - радиальный зазор между поршнем и цилиндром, - средний перепад давления на поршне в процессе сжатия-нагнетания газа, L - длина цилиндрической части поршня, заключенная между нижним выступом канавки и нижним торцом поршня, µ - динамическая вязкость жидкости, τ - время, за которое поршень перемещается из нижней мертвой точки в верхнюю мертвую точку и наоборот, - средняя скорость поршня, с которой он перемещается из нижней мертвой точки в верхнюю мертвую точку и наоборот. Повышается КПД при сравнительно больших зазорах и надежность пуска. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области компрессоростроения и может быть использовано в поршневых компрессорах с автономным охлаждением цилиндропоршневой группы. Компрессор содержит цилиндр 1 с дифференциальным поршнем 2 и двумя рабочими объемами 4 и 5. Полости всасывания 6 и 7 соединены с источником газа и с рабочими объемами 4 и 5 через всасывающие клапаны 8 и 9. Полости нагнетания 10 и 11 соединены с потребителем газа и с рабочими объемами 4 и 5 через нагнетательные клапаны 12 и 13. Вокруг цилиндра 1 имеется жидкостная рубашка охлаждения 14. Полости всасывания 6 и 7 соединены с жидкостной рубашкой 14 через теплообменники 15 и 16, часть рабочего объема которых, подключенная к полостям всасывания, находится выше уровня охлаждающей жидкости в рубашке охлаждения. Теплообменники 15 и 16 являются сообщающимися через рубашку 14 сосудами. Постоянно движущаяся по теплообменникам 15 и 16 и в рубашке 14 жидкость отводит теплоту сжатия от цилиндра 1. Достигается уменьшение габаритов при использовании жидкостного охлаждения, упрощается его схема, снижаются удельные затраты на сжатие газа. 1 з.п. ф-лы, 4 ил.

Изобретение относится к поршневым машинам с бесконтактными лабиринтными уплотнениями и может быть использовано при создании высокоэкономичных поршневых насос-компрессоров. Машина содержит цилиндр 1 с поршнем 3, компрессорную 4 и насосную 5 полости с всасывающими 6 и 7 и нагнетательными 8 и 9 клапанами. Клапаны 7 и 9 размещены симметрично относительно оси цилиндра. Поршень 3 содержит лабиринтные уплотнения 10 и 11, имеющие разнонаправленные винтовые поверхности с прямоугольным сечением выступов. Поршень 3 имеет возможность вращаться относительно штока 12. Юбка поршня 3 снабжена лопатками 14 с вогнутой поверхностью в сторону клапанов 7. Длина L лопаток 14 превышает ход поршня Sh. Оси клапанов 7 и 9 расположены по касательной к окружности 15, лежащей в плоскости, перпендикулярной оси цилиндра 1 и проходящей через оси симметрии поперечного сечения лопаток 14. Потоки жидкости, поступающие через клапаны 7 и 9, создают вращение жидкости в полости 5, которая давит на лопатки 14, поршень 3 вращается, препятствуя винтовыми лабиринтами 10 и 11 появлению перетечек из полости 5 в полость 4 и наоборот. Повышается чистота сжимаемого газа и КПД машины. 5 з.п. ф-лы, 2 ил.

Изобретение относится к области компрессоростроения и может быть использовано при создании экономичных поршневых машин для сжатия газа с независимым активным жидкостным охлаждением. Устройство содержит цилиндр 1 с поршнем 2 и рабочей полостью 3, имеющей всасывающий 4 и нагнетательный 5 клапаны, соединенные со всасывающей 6 и нагнетательной 7 линией, соединенной с газовым ресивером 8. На линии нагнетания 7 имеются участки сужения 9 и расширения 10. Зона перехода 11 соединена каналом 12 с выходом жидкости из рубашки охлаждения 13. Канал входа 14 соединен с рубашкой охлаждения 13 через бачок 15, уровень жидкости в котором ниже зоны перехода 11, и канал 16. Ресивер 8 соединен с бачком 15 через канал 17. При работе машины газ попадает в участок сужения 9, где, в соответствии с уравнением Бернулли, его скорость возрастает, а давление падает. Под действием перепада давления жидкость поднимается из рубашки 13 по каналу 12, потоком газа перемещается к входу в канал 14 и стекает в него под действием гравитационных сил, возвращаясь в бачок 15. Охлаждение цилиндра производится без дополнительных устройств, снижается масса и габариты машины при сохранении высокого КПД. 6 з.п. ф-лы, 4 ил.

Изобретение относится к области компрессоростроения и может быть использовано в поршневых компрессорах с автономным жидкостным охлаждением цилиндропоршневой группы. Компрессор содержит цилиндр 1 с поршнем 2 с образованием камеры сжатия 4, всасывающий клапан 6, нагнетательный клапан 11. Цилиндр 1 содержит рубашку 15 охлаждения, соединенную с источником охлаждающей жидкости 16 в виде поплавковой камеры 17 с подпружиненным пустотелым поплавком 19 с штоком 20 с выступами 21 и 22, воздействующими на подвижный элемент 23 золотника 24. Подвижный элемент 23 имеет две проточки 26 и 27 для фиксаторов 28. Один выход 29 золотника 24 соединен с атмосферой, а другой 30 - с камерой 4 через канал 31 и клапан 43. Камера 17 соединена каналом 33 с рубашкой 15 охлаждения и с теплообменником 34 каналами 38 и 39, в которых установлены группы разнонаправленных гидродиодов 40 и 41. Достигается полноценное, полностью автономное охлаждение цилиндра с минимальными затратами энергии, повышение КПД компрессора при снижении его габаритов и массы, обеспечивается возможность создания передвижных компрессоров с эффективным жидкостным охлаждением. 6 з.п. ф-лы, 8 ил.

Гидравлический и пневматический диод (1) содержит канал (2) круглого сечения, в котором установлены не менее одной группы элементов, состоящих из колец (3), расстояние между верхушками фигур в сечении колец равно Δ. На входе и выходе гидропневматического диода установлены стабилизирующие решетки (4). Соосно каналу установлен стержень (5) с возможностью его перемещения и фиксации вдоль оси канала диода по резьбе, находящейся в стабилизирующих решетках. На стержне жестко закреплены рабочие элементы (6) на расстоянии Δ, равном расстоянию между верхушками фигур в сечении колец. При движении рабочей среды по каналу в прямом направлении, поток, огибая рабочие элементы и кольца, не встречает значительного сопротивления. При движении среды в обратном направлении, поток встречает сопротивление в виде рабочих элементов или колец, и сопротивление диода становится большим. Обеспечивается возможность настройки диодности путем изменения взаимного положения рабочих элементов диода и колец. 3 з.п. ф-лы, 7 ил.

Изобретение относится к артиллерийскому вооружению, а именно к снарядам с газовым подвесом. Снаряд содержит гильзу с капсюлем, имеющим трубку с отверстием или отверстиями для прохода поджигающего пламени, боевую и направляющую часть. В направляющей части выполнена полость питания, соединенная с наружной цилиндрической поверхностью через отверстия малого диаметра. Полость питания заполнена веществом, имеющим высокую скорость горения, и соединена с тыльной стороной направляющей части снаряда через отверстие. Отверстие или отверстия для прохода поджигающего пламени капсюля размещены в полости питания газового подвеса. Трубка капсюля проходит с зазором через тыльную сторону направляющей части снаряда. Уменьшается затраты газа на центрирование снаряда и его масса. 2 з.п. ф-лы, 9 ил.

Изобретение относится к области энергетики и компрессоростроения и может быть использовано при создании поршневых компрессоров. Поршневая машина содержит цилиндр 1 с поршнем 2 с образованием рабочего объема 4, клапанную коробку 5 с полостью всасывания 6, линию всасывания 7, всасывающий клапан 8, полость нагнетания 11, линию нагнетания 12, нагнетательный клапан 13. Рубашка охлаждения 14 соединена с источником давления жидкости, выполненным в виде размещенной в клапанной коробке 5 полости 15 с гибкой мембраной 16. Полость 15 соединена каналами 17 и 18, выполненными в виде теплообменников, с рубашкой 14 через обратные клапаны 19 и 20. Оборотная сторона мембраны 16 перекрыта газовой полостью 21. Снижаются общие масса и габариты компрессорной установки, появляется возможность создавать передвижные конструкции, снижаются удельные затраты на сжатие газа. 11 з.п. ф-лы, 7 ил.

Изобретение относится к боеприпасам, в частности к снарядам с газовым подвесом. Снаряд с газовым подвесом имеет гладкую цилиндрическую часть, в которой выполнена полость питания для создания давления в несущем газовом слое. Полость питания соединена с наружной цилиндрической поверхностью через питающие устройства. Полость питания заполнена веществом, имеющим высокую скорость горения, и имеет устройство для поджигания этого вещества. Устройство для поджигания вещества, находящегося в полости питания подвеса, выполнено в виде установленного в этой полости капсюля и массивного ударника с наконечником для накалывания этого капсюля. Достигается увеличение дальности стрельбы снарядом. 3 з.п. ф-лы, 5 ил.

Изобретение относится к области компрессоростроения и может быть использовано при создании экономичных поршневых машин для сжатия газа с индивидуальным жидкостным охлаждением цилиндропоршневой группы. Поршневая машина содержит цилиндр 1 и размещенный в нем поршень 2, полость сжатия 3, всасывающий 4 и нагнетательный 5 клапаны, установленные соответственно в полости всасывания 6 и нагнетания 7 и соединенные соответственно с всасывающей 8 и нагнетательной 9 линиями. Цилиндр 1 имеет жидкостную рубашку 10, соединенную через теплообменник 11 с устройством для прокачки жидкости, которое выполнено в виде зауженного участка 12 линии всасывания 8. Изобретение позволяет уменьшить габариты и массу машины, а также снизить удельные затраты на сжатие газа. 4 з.п. ф-лы, 6 ил.

Изобретение относится к области управления или регулирования расхода в текучей среде (жидкость, газ) и может быть использовано в различных гидравлических и пневматических системах, в которых необходимо регулировать параметры потоков рабочей среды при низких и средних давлениях, в том числе в качестве запорных органов гидравлических и пневматических машин периодического действия (например, в насосах и компрессорах). Заявленный гидравлический или пневматический диод содержит канал прямоугольного сечения для прохода жидкой или газообразной среды, в котором на двух его противоположных сторонах установлены друг против друга по крайней мере две жесткие пластины, наклоненные под углом в сторону прямого потока, при этом каждая жесткая пластина снабжена параллельно и вплотную к ней по плоскости установленной гибкой пластиной, размещенной со стороны обратного потока, с образованием пары пластин, причем эта гибкая пластина имеет длину в сторону оси канала, превышающую длину жесткой пластины. Технический результат заключается в повышении диодности гидропневматических диодов при работе на средних давлениях газа и жидкости. 2 з.п. ф-лы, 13 ил.

Изобретение относится к области компрессоро- и насосостроения и может быть использовано при создании быстроходных и экономичных машин объемного действия, к которым предъявляются высокие требования по массогабаритным и экономическим показателям. Машина содержит цилиндр 1 с поршнем 2, соединенным с механизмом привода. Над поршнем 2 размещена компрессорная полость 7 с клапанами 8 и 9. Подпоршневая полость 10 с картером 11 выполнена в виде жидкостного насоса с линией всасывания 12 и линией нагнетания 13. Участки линии нагнетания 13 и всасывания 14 выполнены в виде трубопроводов прямоугольного сечения, имеющих на противоположных гранях наклонные в сторону прямого потока жидкости три пары пазов 15 с установленными в них жесткой 16 и гибкой 17 пластинами. Цилиндр 1 окружен жидкостной рубашкой 19, соединенной с картером 11 через отверстие 20. Нагнетательная линия 13 соединена с насосной полостью 10 через рубашку 19, отверстие 20 и картер 11. Благодаря форме канала, по которому двигается жидкость, образуются мощные завихрения, вектор действия которых направлен против потока, а сечение потока сильно сокращается из-за прогнувшихся под действием сил сопротивления потоку пластин 17. Образовавшиеся сильные завихрения потока не только тормозят его, но и отбирают энергию за счет сил трения. Поэтому линия нагнетания 13 в процессе всасывания оказывает обратному потоку большое сопротивление, и он становится очень малым по сравнению с потоком в линии всасывания 12. Благодаря этому основной поток проходит через линию всасывания 12, заполняя полости 10 и 11 жидкостью от источника. Повышается быстроходность машины, улучшаются ее массогабаритные характеристики. 2 з.п. ф-лы, 6 ил.

Изобретение относится к области машин объемного действия поршневого типа. Способ заключается в том, что при возвратно-поступательном движении поршня происходит всасывание, сжатие и нагнетание газа потребителю с одновременным сжатием смазочно-охлаждающей жидкости в картере машины при ходе поршня вниз и ее подача в зазор между поршнем и цилиндром через питающие круговые щели в цилиндре и в сам цилиндр в конце хода всасывания и начале хода сжатия. В конце хода поршня вверх соединяют картер машины с атмосферой. Машина состоит из цилиндра 1 с установленным в нем с зазором поршнем 2 с механизмом движения, размещенным в частично заполненной смазочно-охлаждающей жидкостью 6 полости 7 картера 8. В цилиндр 1 запрессованы втулки 9, 10 и 11, которые при контакте образуют своими шероховатыми торцовыми поверхностями питающие круговые щели 12. Наружная окружность щелей 12 соединена с полостью 7 через обратный самодействующий клапан 13 и канал 14, подсоединенные к картеру 8 ниже уровня 15 жидкости. Цилиндр 1 имеет сквозное отверстие 29, которое служит для соединения свободной от жидкости полости 7 картера 8 с атмосферой при положении поршня 2 в верхней мертвой точке. Изобретение обладает высоким ресурсом безостановочной работы, высокой экономичностью. 2 н. и 7 з.п. ф-лы, 5 ил.

Изобретение относится к области насосо- и компрессоростроения и может быть использовано для одновременного и попеременного сжатия жидкостей и газов. Машина состоит из цилиндра (1) с ротором (2) с пазами (3), в которых имеются подпружиненные пластины (4), и с двумя серповидными камерами (6) и (7). Камера (6) соединена с источником жидкости через всасывающее окно (8) и с потребителем жидкости через нагнетательное окно (9), линию нагнетания (10) и рубашку охлаждения (11). Камера (7) соединена с источником газа через всасывающее окно (12), а с потребителем газа - через нагнетательное окно (13). Между камерами (6) и (7) имеются уплотнительные щели (14) и (15), в пределах длины которых на поверхности цилиндра (1) размещены канавки (16) и (17). Канавка (16) соединена с канавками (18) и (19) на торцовых крышках (20) и (21) и соединена каналом (22) с линией нагнетания газа, а канавка (17) - с линией нагнетания жидкости через канал (23). На торцовой крышке (20) имеется канавка (26), а на крышке (21) - канавка (27). Обе канавки (26) и (27) соединены с канавкой (17). Изобретение направлено на повышение эффективности работы машины путем снижения количества жидкости в сжатом газе и газа в сжатой жидкости. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании поршневых машин объемного действия, предназначенных для сжатия и подачи потребителю одновременно или попеременно жидкостей и газов. Способ работы поршневого насоса-компрессора состоит в том, что осуществляют попеременное всасывание, сжатие и подачу потребителю газа из надпоршневой полости, а также всасывание и нагнетание жидкости в подпоршневую полость и подачу ее потребителю. Подача сжатого газа потребителю осуществляется через самодействующий нагнетательный клапан и линию нагнетания газа. Подача жидкости потребителю осуществляется через линию нагнетания жидкости. Сопротивление линии нагнетания газа изменяют в соответствии с давлением нагнетания жидкости. Насос-компрессор содержит цилиндр 1 с установленным в нем поршнем 2, делящим цилиндр на газовую 3 и жидкостную 4 полости. Они соединены с линиями всасывания газа 5 и жидкости через всасывающие самодействующие клапаны 6 и 10 и с линиями нагнетания газа 7 и жидкости 11 через нагнетательные самодействующие клапаны 9 и 12. Газовый нагнетательный клапан 9 имеет ограничитель подъема, выполненный в виде сильфона 17 с торцовой частью, обращенной в сторону газового нагнетательного клапана 9, и внутренняя полость которого подключена к жидкостной линии нагнетания 11. В линии нагнетания газа 7 может быть установлен подпружиненный поршень 20, размещенный одним концом в цилиндре 21, соединенном с жидкостной линией нагнетания, а другим концом размещен непосредственно в трубопроводе линии нагнетания газа 7 с возможностью частичного перекрытия этой линии. Действие пружины 19 направлено против действия давления в жидкостной линии нагнетания. В процессе пуска насоса-компрессора не создается условий для возникновения гидроудара из-за проникновения жидкости из камеры 4 в камеру 2 при отсутствии давления в линии нагнетания газа 7. Аналогично насос-компрессор работает, если по каким-либо причинам (разрыв линии нагнетания, увеличение расхода потребителя газа) давление в линии нагнетания газа существенно уменьшается против номинального. 3 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к боеприпасам, в частности к снарядам с газостатическим подвесом. Снаряд с газостатическим подвесом содержит боевую и направляющую части. В направляющей части выполнена полость питания для создания давления в несущем газовом слое газостатического подвеса. Полость питания соединена с наружной цилиндрической поверхностью через питающие устройства в виде отверстий малого диаметра. Полость питания заполнена веществом, имеющим высокую скорость горения, и соединена с тыльной частью снаряда через отверстие. Направляющая часть выполнена в виде толстостенного стакана, в донышке которого имеется отверстие. Боевая часть установлена частично внутри этого стакана с образованием П-образной полости, заполненной веществом, имеющим высокую скорость горения. Питающие газостатический подвес отверстия размещены в цилиндрической стенке стакана как минимум в двух поясах в пределах объема П-образной полости. Достигается повышение эффективности снаряда с газостатическим подвесом. 6 ил.

Изобретение относится к области машин объемного действия поршневого типа и может быть использовано при создании высокоэффективных поршневых машин малой и средней производительности с автономной жидкостной системой охлаждения. Способ работы заключается в попеременном всасывании и нагнетании газа путем изменения объема рабочей полости цилиндра. Цилиндр обтекается охлаждающей жидкостью. Картер соединяют с окружающей средой при положении поршня в верхней и нижней мертвых точках. Поршневая машина для осуществления способа содержит цилиндр 1 с жидкостной рубашкой 2, установленный на частично заполненном жидкостью картере 3 с механизмом привода, соединенным с поршнем 7, рабочую полость 8, полости всасывания 9 и нагнетания 10, всасывающий клапан 11 и нагнетательный клапан 12. Рубашка 2 соединена с нижней частью картера 3 через обратные клапаны 13 и 14, канал 15, бачок 16 с поплавком 17 и канал 18, канал 19. Нижняя часть цилиндра 1 образует с картером 3 общий объем 20, который соединен с атмосферой при положении поршня в верхней (ВМТ) и нижней (НМТ) мертвых точках: через отверстие (21) в положении ВМТ и через клапан (22) с управляющим элементом (23) в положении НМТ. Снижаются затраты на работу системы охлаждения, повышаются эффективность и КПД машины. 2 н. и 9 з.п. ф-лы, 7 ил.

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании гибридных поршневых машин объемного действия преимущественно малой и средней производительности, предназначенных для сжатия и подачи потребителю одновременно или попеременно жидкостей и газов. Насос-компрессор содержит цилиндр 1 и тронковый поршень 3, компрессорную полость 4 с клапанами 5 и 6. Цилиндр 1 установлен на картере 7, который соединен с рубашкой охлаждения 11 и через обратный клапан 12 - с потребителем жидкости, а через теплообменник 13 с источником жидкости. Рубашка охлаждения 11 выполнена в виде кольцевого цилиндра 14, открытого в сторону картера 7. Поршень 3 снабжен дополнительным кольцевым поршнем 15 с возможностью его перемещения с зазорами 16 и 17 в кольцевом цилиндре 14 с образованием насосной полости 18. За счет интенсивного охлаждения и снижения утечек газа повышается КПД компрессорной полости 4, появляется возможность получать высокое давление жидкости без загрязнения сжимаемого газа. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области малорасходных насосных машин. Насос состоит из цилиндра 7, выполненного из немагнитного материала, с индукционной катушкой 8, соединенной с источником пульсирующего тока. Внутри цилиндра 7 с радиальным зазором установлен поршень 9, являющийся сердечником электромагнита, подпружиненный пружиной 10 в осевом направлении и изготовленный из магнитомягкой стали или из высококоэрцетивного магнитного материала. Поршень 9 имеет отверстие 11 с прямоугольным поперечным сечением, в котором смонтированы три пары жестких 12 и гибких 13 пластин. Гибкая пластина 13 имеет длину в сторону оси канала большую, чем жесткая пластина 12. При подаче пульсирующего напряжения на обмотку катушки 10 в ней создается переменное магнитное поле, с заданной частотой, втягивающее поршень 9, который, совершает колебательное движение вдоль оси цилиндра 7. При возвратно-поступательном (колебательном) движении поршня 9 в насосе возникает пульсирующий поток жидкости в направлении подачи насоса. Увеличивается производительность и напор насоса. 6 ил.

 


Наверх