Патенты автора Хаджиев Саламбек Наибович (RU)

Изобретение относится к переработке тяжелого углеводородного сырья с высоким содержанием смол и может быть использовано при переработке высококипящих фракций матричной нефти. Изобретение касается комплексного способа комплексной добычи и переработки матричной нефти, включающего: а) стадию извлечения матричной нефти из пласта с помощью ароматического растворителя тяжелой части матричной нефти при массовом отношении указанного растворителя к матричной нефти от 1:1 до 2:1; б) стадию обезвоживания и обессоливания смеси матричной нефти с ароматическим растворителем с последующей атмосферной перегонкой и выделения дизельной фракции 180-350°С, остатка более 350°С и смеси углеводородного газа, бензиновой фракции и ароматических углеводородов; в) стадию вторичного фракционирования смеси со стадии б) на смесь углеводородных газов с легким бензином - фракцию до 105°С, тяжелый бензин - фракцию 140-180°С и фракцию ароматических углеводородов с температурой кипения 105-140°С; г) стадию гидроконверсии остатка более 350°С со стадии б), характеризующуюся тем, что в указанный остаток вводят водный раствор прекурсора молибденсодержащего катализатора, полученную смесь диспергируют до образования устойчивой обращенной эмульсии, смешивают с водородом, нагревают до температуры реакции 380-460°С и проводят гидрогенизацию в реакторе с восходящим потоком при указанной температуре и давлении 7-10 МПа в присутствии образующегося из прекурсора наноразмерного катализатора, с получением углеводородного газа, который выводят как товарный продукт, бензиновой фракции, дизельной фракции 180-350°С и остатка более 350°С; д) стадию извлечения металлов, согласно которой остаток более 350°С со стадии г) направляют на атмосферно-вакуумную дистилляцию с выделением остатка с температурой кипения более 520°С, из которого выделяют прекурсор молибденсодержащего катализатора и металлы как товарный продукт; е) стадию выделения и концентрирования ароматических углеводородов из бензиновой фракции стадии г) и ароматических углеводородов стадии в) путем фракционирования с получением бензол-толуол-ксилольной фракции с температурой кипения 105-140°С и содержанием толуола не менее 70 мас.% для использования в качестве ароматического растворителя тяжелой части матричной нефти на стадии а) и остаточной тяжелой бензиновой фракции; ж) стадию гидрооблагораживания смеси дизельных фракций со стадий б) и г) совместно с тяжелым бензином стадии в) и остаточной бензиновой фракцией стадии е) и водородсодержащим газом с получением дизельного топлива и серы как товарных продуктов, углеводородного газа и бензинового отгона; з) стадию сжижения смеси углеводородного газа и легкого бензина стадии в) и углеводородного газа стадии ж); и) стадию смешения сжиженного углеводородного газа стадии з) и бензинового отгона стадии ж) и вывода полученной смеси как товарного продукта - компонента газового конденсата. Технический результат - максимальное извлечение ценных товарных продуктов: нефтепродуктов, в том числе углеводородных газов, серы и металлов из тяжелой матричной нефти экологичным, безотходным способом. 3 з.п. ф-лы, 9 табл., 1 ил., 2 пр.

Изобретение относится к способу переработки тяжелых нефтяных фракций, включающему предварительное введение в сырье - тяжелые нефтяные фракции - водного раствора соли аммония и переходного металла, взаимодействие указанной соли с серосодержащим агентом, получение микроэмульсии серосодержащей соли переходного металла в сырье, крекинг сырья при повышенной температуре в присутствии катализатора и разделение продуктов реакции. Способ характеризуется тем, что в качестве указанной соли используют парамолибдат или паравольфрамат аммония, введение водного раствора указанной соли осуществляют в смеси с водным раствором серосодержащего агента - сульфида аммония - при мольном отношении сера : переходный металл, равном 4:1, после указанного введения добавляют стабилизатор - смесь оксиэтилированного алкилфенола и моноолеата сорбита - в массовом соотношении 1:2,3 в количестве 3% масс. по отношению к сырью и осуществляют диспергирование ультразвуком частотой 20,35-23,65 кГц до получения микроэмульсии с размером частиц дисперсной фазы 60-140 нм, содержащей 0,05-0,15% масс. переходного металла, крекинг проводят при температуре 500-560°C, давлении 0,1 МПа и массовой скорости подачи сырья 3,5-4,0 ч-1, катализатор крекинга содержит цеолит Y, который in situ модифицируется переходным металлом из указанной эмульсии, а продукты реакции разделяют на жидкие и газообразные. Технический результат - увеличение конверсии сырья, увеличение выхода газообразных фракций, в том числе пропилена и бутиленов, и бензиновой фракции. 2 з.п. ф-лы, 2 табл., 9 пр.

Настоящее изобретение относится к получению высокооктанового бензина с низким содержанием ароматических соединений, но с высоким содержанием триптана (2,2,3-триметилбутана), и может применяться в области получения моторного топлива. Комбинированный катализатор получения обогащенного триптаном экологически чистого бензина включает модифицированные цеолиты HZSM-5 и HY при их массовом отношении 1:1-1:2, причем модифицированный цеолит HZSM-5 имеет следующий состав, мас.%: цеолит HZSM-5 с SiO2/Al2O3=37, содержащий не более 0,04 мас.% оксида натрия - 50-70, Mg - 0,1-2,0, оксид алюминия - остальное, а модифицированный цеолит HY имеет следующий состав, мас.%: цеолит HY с SiO2/Al2O3=2.73, содержащий не более 0,02 мас.% оксида натрия - 50-70, Pd - 0,1-1,0, оксид лантана - 0,5-3,5, оксид алюминия - остальное. Способ получения обогащенного триптаном экологически чистого бензина с октановым числом не менее 90 пунктов по исследовательскому методу включает превращение ДМЭ и/или метанола в присутствии указанного комбинированного катализатора. Технический результат заключается в получении обогащенного триптаном бензина, повышении селективности по высокоразветвленным C5+-углеводородам, снижении содержания в продуктах ароматических углеводородов, в частности дурола, экологическая чистота продукта. 2 н.п. ф-лы, 1 табл., 17 пр.

Изобретение относится к способам переработки тяжелого углеводородного сырья с чрезвычайно высоким содержанием парафино-нафтеновых углеводородов и низким содержанием нативных смол и асфальтенов и может быть использовано при переработке остатка атмосферной дистилляции газового конденсата АОГК. В способе гидроконверсии высокопарафинистого остатка атмосферной дистилляции газового конденсата перед гидроконверсией сырье смешивают с суспензией ультрадисперсного Mo-содержащего катализатора с размерами частиц 5-300 нм и концентрацией катализатора 1% мас. (в пересчете на молибден), получая гомогенную устойчивую суспензию ультрадисперсного катализатора в сырье, содержащую 0,05-0,2% мас. катализатора (в пересчете на молибден) на массу сырья. Первую суспензию предварительно готовят путем диспергирования каталитически активного соединения молибдена в остатке атмосферной дистилляции гидрогенизата. Проводят гидроконверсию приготовленной смеси путем смешения с водородом и гидрогенизации сырья в реакторе с восходящим потоком сырья при температуре 380-450°С и давлении 7-10 МПа. Сепарируют продукты гидроконверсии с получением водородсодержащего газа, который возвращают на гидрогенизацию в качестве водорода, дистиллятных фракций с температурой кипения до 350°С, которые выводят как товарные продукты, и остатка атмосферной дистилляции гидрогенизата с температурой кипения выше 350°С. Часть последнего (поток I) возвращают в процесс гидроконверсии и используют для подготовки суспензии свежего катализатора, часть (поток II) возвращают на смешение с сырьем, часть (поток III) выводят из процесса гидроконверсии для извлечения и регенерации катализатора. Предпочтительно используют ультрадисперсный Mo-содержащий катализатор, промотированный никелем из условия массового соотношения Mo:Ni =(100-10):1. Количество металлов свежего катализатора, диспергируемого в потоке I, должно быть равным по массе количеству металлов, выводимых с потоком III. Соотношение масс сырья и потоков составляет: сырье: [поток I+поток II+поток III]=1:(0,25-0,8). Соотношение массы сырья и потока III составляет 1:(0,05-0,3). Углеводородную часть остатка выше 350°С потока III после отделения катализатора и других металлов возвращают на рецикл. Массу потока I рассчитывают по формуле (1), где M(I) и М(III) - массы потоков (I) и (III) соответственно (одинаковые единицы); С(350) - содержание катализаторов (в пересчете на металлы) в остатке атмосферной дистилляции гидрогенизата, % мас. Технический результат - повышение глубины конверсии сырья, повышение устойчивости процесса, упрощение способа, снижение капитальных и энергозатрат, экологическая безопасность. 6 з.п. ф-лы, 1 ил., 1 табл., 6 пр.

Изобретение относится к способам переработки тяжелого углеводородного сырья с чрезвычайно высоким содержанием парафино-нафтеновых углеводородов и низким содержанием нативных смол и асфальтенов под давлением водорода в присутствии гетерогенных наноразмерных катализаторов и может быть использовано при переработке атмосферного остатка дистилляции газового конденсата (АОГК). По способу комплексной переработки остатка атмосферной дистилляции газового конденсата полученную ex situ суспензию ультрадисперсного Mo-содержащего катализатора с размерами частиц 5-300 нм и концентрацией катализатора 1% в остатке дистилляции гидрогенизата диспергируют в АОГК с получением гомогенной устойчивой суспензии ультрадисперсного катализатора, содержащей 0,02-0,05% катализатора (на молибден). Перед гидроконверсией смесь подогревают в регенеративном теплообменнике до 250-280°С и в трубчатой печи до 380-450°С, проводят гидроконверсию приготовленной смеси при этой температуре и давлении 7-10 МПа в реакторе с восходящим потоком сырья при подаче холодного водородсодержащего газа в две или три точки на разной высоте реактора. Продукты разделяют в сепараторах высокого и низкого давления с выделением газа и аминовой очисткой газа, который направляют в устройство концентрирования водорода и возвращают на гидроконверсию как водородсодержащий газ, а затем направляют на дистилляцию. Дистиллятные фракции НК-180°С и 180-350°С выводят как товарный продукт. Часть не-превращенного высококипящего остатка с температурой кипения выше 350°С, содержащего катализатор, возвращают в процесс гидроконверсии в качестве рецикла, а часть направляют на выделение металлов и отработанного катализатора, после чего часть указанного деметаллизированного остатка возвращают как остаток дистилляции гидрогенизата для получения суспензии свежего катализатора, а часть выводят как дополнительный товарный продукт - компонент судового топлива. Для осуществления этого способа используют установку, включающую блок подготовки сырья и катализатора, блок гидроконверсии АОГК, блок сепарации продуктов гидроконверсии, блок концентрирования водорода с возможностью получения водородсодержащего газа, соединенный с блоком гидроконверсии, блок выделения катализатора и блоки вывода товарного продукта - дистиллятных фракций и компонента судового топлива. Блок подготовки сырья и катализатора включает последовательно соединенные устройство получения суспензии свежего катализатора и устройство смешения суспензии катализатора с сырьем. Перед блоком гидроконверсии последовательно установлены регенеративный теплообменник и трубчатая печь. Блок гидроконверсии является реактором с восходящим потоком сырья, включающим две или три точки подачи холодного водородсодержащего газа на разной высоте реактора. Блок сепарации продуктов гидроконверсии включает сепараторы высокого и низкого давления и соединенное с ними и с блоком концентрирования водорода устройство аминовой очистки газа, и колонну атмосферной дистилляции, соединеную с устройством очистки газа, блоком вывода дистиллятных фракций, устройством смешения суспензии катализатора с сырьем и блоком выделения катализатора, который соединен с устройством получения суспензии свежего катализатора и устройством вывода второго товарного продукта - компонента судового топлива. Технический результат - повышение глубины конверсии АОГК, повышение устойчивости процесса, упрощение установки и способа, снижение капитальных и эксплуатационных затрат, исключение образования и отложения кокса. 2 н.п. ф-лы, 1 ил., 4 пр.

Изобретение относится к технологии производства гетерогенных катализаторов. Предложен способ получения катализатора алкилирования изобутана бутиленами на основе цеолита, включающий ионный обмен путем обработки цеолита типа фожазит, гранулированного без связующего, при 70÷90°C с одновременным ультразвуковым воздействием при силе тока 1-5 А в течение 1-2 ч вначале водным раствором соли кальция, затем двукратно водным раствором соли редкоземельного элемента и после этого водным раствором соли аммония, водными растворами солей кальция, редкоземельного элемента и аммония при повышенной температуре в течение времени, необходимого для перевода цеолита из натриевой формы в редкоземельную кальциевую форму. После каждого ионного обмена проводят сушку и прокаливание в две стадии при температуре 300-500°C в течение 1,5-2,5 ч. Этим способом получают катализатор алкилирования изобутана бутиленами на основе цеолита типа фожазит, содержащий оксид алюминия и диоксид кремния при молярном отношении диоксид кремния:оксид алюминия, равном 2,7, оксиды натрия, кальция, редкоземельного элемента при следующем соотношении компонентов, % масс.: оксид натрия - 0,1÷0,8, оксид кальция - 1,3÷3,0, оксид редкоземельного элемента - 18,8÷22,9, указанный цеолит - остальное. Алкилирование изобутана бутиленами проводят при температуре 60÷95°C, давлении 0,85-1,8 МПа, объемной скорости подачи сырья по олефинам 0,2÷0,6 ч-1, отношении изобутан:бутилены в сырье 5÷27:1 и длительности подачи сырья 4-36 ч. Технический результат заключается в увеличении активности катализатора по конверсии олефинов, производительности по алкилату и выхода целевого продукта (алкилбензина) на 10÷15% масс. 3 н. и 2 з.п. ф-лы, 1 табл., 11 пр.

Изобретение раскрывает способ получения дивинила путем превращения кислородсодержащего органического вещества при повышенной температуре в присутствии катализатора, включающего оксид цинка ZnO, оксид калия K2O, оксид магния MgO и γ-оксид алюминия γ-Al2O3, характеризующийся тем, что в качестве органического вещества используют диметиловый эфир ДМЭ, или смесь ДМЭ с метанолом, или смеси ДМЭ с метанолом и водой с использованием разбавителя при мольном отношении разбавитель : кислородсодержащее органическое вещество = 0-10:1, применением в качестве разбавителя азота или синтез-газа или водяного пара, превращение проводят при температуре 370-420°C в присутствии предварительно активированного катализатора следующего состава, мас.%: ZnO 20-24 MgO 4-6 K2O 0,15-0,30 γ-Al2O3 остальное Технический результат - расширение сырьевой базы для производства дивинила, использование диметилового эфира, производимого из альтернативных источников углеродсодержащего сырья, для нефтехимического синтеза. 2 з.п. ф-лы, 38 пр.

Настоящее изобретение относится к нефтехимической промышленности, а именно к способам получения низкоконцентрированных каталитических дисперсий для процесса получения алифатических углеводородов по методу Фишера-Тропша в трехфазном сларри-реакторе. Способ получения металлсодержащей наноразмерной дисперсии катализатора синтеза Фишера-Тропша на основе оксидов активных металлов включает растворение солей активных металлов в воде, введение полученного раствора в расплавленный нефтяной парафин при температуре выше температуры разложения указанных солей и образование указанной дисперсии катализатора, причем введение указанного раствора солей осуществляют со скоростью 20-60 мл/час при перемешивании в токе инертного газа, после чего осуществляют выдерживание до образования оксидов активных металлов и охлаждение в токе инертного газа в течение 1-6 часов, а содержание активных металлов катализатора в указанной дисперсии не превышает 3 мас.%. Технический результат - уменьшение размера частиц наноразмерной дисперсии, узкое распределение наноразмерных частиц по размерам, снижение концентрации активных металлов, снижение эксплуатационных затрат, предотвращение оседания и агломерации частиц дисперсии, обеспечение возможности ее длительного хранения без расслаивания и оседания. 2 з.п. ф-лы, 1 табл., 12 пр.

Изобретение относится к области переработки нефтяных отходов, а именно нефтяных шламов, в нефтепродукты, и может быть использовано для утилизации нефтяных шламов и получения дистиллятных фракций с температурой не выше 520°С. Для подготовки нефтяного шлама осуществляют его контакт с растворителем в экстракторе, экстракцию при постоянном перемешивании и продувке инертным газом, выделение из экстракта воды, части растворителя и фракции легких углеводородов, кипящих до 350°С. Остальную часть экстракта отстаиванием и декантацией разделяют на жидкую органическую фазу и осадок. Последний направляют на повторную экстракцию. Осуществляют горячее фильтрование второго экстракта при избыточном давлении 0,4-0,6 МПа и температуре 45-50°С и смешивают фильтрат с жидкой органической фазой со стадии декантации. Растворитель отделяют от осадка фильтрования - выпариванием, а от фильтрата или его смеси с жидкой органической фазой ректификацией. Остаток ректификации нагревают 70-90°С, с получением подготовленного нефтяного шлама. Далее его смешивают с древесными опилками, которые предварительно пропитывают водным раствором прекурсора катализатора - парамолибдата аммония, так что содержание прекурсора катализатора в сырье составляет 0.05% мас. в расчете на Мо, диспергируют смесь в роторно-кавитационном диспергаторе и проводят гидрогенизацию сырья в реакторе при повышенной температуре и давлении в присутствии водорода и катализатора, образующегося in situ из прекурсора катализатора. Технический результат - повышение степени утилизации нефтяного шлама, в том числе его наиболее тяжелых углеводородных фракций, исключение коррозии оборудования и отравления катализатора минеральными примесями, содержащимися в нефтяном шламе, и повышение выхода дистиллятных фракций, уменьшение выхода кокса при гидроконверсии нефтяного шлама. 6 табл., 7 пр.

Изобретение относится к способу получения стирола из отходов полистирола, включающему растворение отходов полистирола в органическом растворителе, введение полученного раствора в реактор и разложение полистирола в отсутствие катализатора при повышенной температуре и атмосферном давлении. Способ характеризуется тем, что в качестве органического растворителя используют легкий газойль каталитического крекинга или тяжелый газойль каталитического крекинга, или их смесь, полистирол растворяют в количестве 5-15 мас.% по отношению к исходному сырью при температуре 70-120°C, обеспечивающей полное растворение полистирола, разложение проводят в проточном реакторе при температуре 450-550°C, атмосферном давлении и объемной скорости подачи сырья в реактор 4-36 ч-1. Технический результат - обеспечение полной утилизации отходов полистирола, повышение выхода стирола - до 86 мас.%, снижение загрязнения окружающей среды отходами полистирола. 2 табл., 11 пр.

Изобретение относится к области нефтепереработки и, более конкретно, к способам приготовления наноразмерных и ультрадисперсных катализаторов без носителя для гидрогенизационной переработки высокомолекулярного углеводородного сырья, в частности высококипящих остатков переработки нефти, природных битумов, битуминозных нефтей, углеродсодержащих отходов и др., и может быть использовано в нефтеперерабатывающей промышленности с получением углеводородного газа, бензиновых и дизельных фракций, вакуумного газойля. Способ получения суспензии катализатора гидроконверсии тяжелого нефтяного сырья включает стадии получения гомогенной смеси водного раствора водорастворимого прекурсора катализатора и сульфидирующего агента в углеводородной среде, диспергирования смеси с получением обращенной эмульсии и термообработки обращенной эмульсии в течение 2-8 ч при температуре 280-370°С с получением суспензии, содержащей стабилизированные в углеводородной среде частицы катализатора размером не более 350 нм. Углеводородная среда содержит асфальтены при отношении их содержания к парафинонафтеновым углеводородам более 0,16 и к ароматическим углеводородам более 0,08. В качестве сульфидирующего агента используют элементную серу при атомном отношении S/Me=1.5-2. Получение указанной гомогенной смеси осуществляют путем предварительного растворения серы в углеводородной среде при температуре 130°С, последующего добавления в эту среду водного раствора прекурсора катализатора и гомогенизации при температуре 60-90°С. В качестве водорастворимого прекурсора катализатора используют водорастворимые соли никеля, молибдена или кобальта, в том числе парамолибдат аммония. Технический результат - уменьшение размера частиц катализатора в суспензии с микроразмерного до ультрадисперсного, повышение стабильности суспензии, повышение степени сульфидирования катализатора, удешевление из-за отсутствия дорогостоящих ПАВ, повышение активности в процессе гидроконверсии, а именно повышение степени конверсии фракции более 520°С и снижение образования кокса. 1 з.п. ф-лы, 1 ил., 1 табл., 14 пр.

Изобретение относится к химической технологии и может быть использовано в процессах с циркулирующим потоком мелкодисперсного катализатора. Способ определения скорости циркуляции мелкодисперсного катализатора в линии циркуляции между реактором и регенератором, включающей подъемник катализатора, заключается в том, что измеряют температуру подъемника и определяют скорость циркуляции мелкодисперсного катализатора по предварительно определенной зависимости между указанной скоростью и температурой подъемника. Реактор предпочтительно представляет собой реактор окислительной конверсии этана в этилен. Подъемник катализатора предпочтительно изолирован от окружающей среды. Технический результат - упрощение способа, возможность измерения скорости циркуляции катализатора без применения дополнительного оборудования и без прерывания технологического процесса. 2 з.п. ф-лы, 1 табл., 2 ил.

Настоящее изобретение относится вариантам способа получения синтетической нефти из природного или попутного нефтяного газа. Один из вариантом способа включает стадию синтеза оксигенатов из исходного синтез-газа, полученного из указанного сырья, в присутствии металлооксидного катализатора, с получением смеси, содержащей оксигенаты, стадию получения углеводородов из указанной смеси в присутствии цеолитного катализатора, стадию разделения углеводородов на жидкую органическую фазу, которую выводят как продукт, газовую фазу и водный конденсат стадии получения углеводородов, и стадию возвращения части газовой фазы в реактор синтеза оксигенатов как циркулирующего газа. При этом кратность циркуляции составляет 3-5, в качестве металлооксидного катализатора используют катализатор, полученный таблетированием промышленного медьцинкалюминиевого катализатора МегаМакс-507 и активного оксида алюминия, взятых в массовом соотношении (1-2)/1, с коллоидным графитом в количестве 1,0% от массы катализатора, в качестве цеолитного катализатора - катализатор на основе декатионированного цеолита типа ZSM-5, модифицированного цинком и металлом, выбранным из семейства платины подгруппы VIIIB, состава, мас.%: Na2O - 0,09, указанный металл 0,1-0,5, Fe2O3 - 0,5-1,0, ZnO - 2,0-5,0, Al2O3 - 25,0, SiO2 - остальное, до стадии получения углеводородов из смеси, содержащей оксигенаты, предварительно выделяют водный конденсат стадии синтеза оксигенатов, который направляют на смешение с водным конденсатом стадии получения углеводородов, полученную смесь конденсатов направляют в ректификационную колонну, а дистиллят ректификационной колонны с содержанием метанола не менее 89,0 мас.% направляют в реактор синтеза оксигенатов. Предлагаемые варианты способа позволяют получить синтетическую нефть с низким содержанием ароматических соединений при сохранении селективности. 2 н.п. ф-лы, 2 ил., 2 табл., 8 пр.

Изобретение относится к способу производства катализаторов и может быть использовано для процесса алкилирования изопарафиновых углеводородов олефинами в нефтеперерабатывающей и нефтехимической промышленности. Для получения катализатора алкилирования изобутана олефинами на основе цеолита типа NaNH4Y при остаточном содержании оксида натрия не более 0,8 мас.% сначала получают суспензию цеолита в воде. Полученный цеолит подвергают ионному обмену при атмосферном давлении и температуре 70-85°C в течение 3-9 ч на катионы лантана из водного раствора нитрата лантана, взятого в количестве, обеспечивающем содержание оксида лантана в конечном катализаторе 0,15÷3,0 мас.%. По первому варианту суспензию цеолита фильтруют, промывают свежей водой, сушат при 110÷130°C в течение 2-4 ч, прессуют в таблетки и прокаливают их при 350°C в течение 1÷2 ч и при 550°C в течение 2÷4 ч. По второму варианту суспензию цеолита смешивают с другой суспензией, полученной пептизацией порошка гидроксида алюминия бемитной структуры раствором азотной кислоты до рН=1, упаривают, формуют в гранулы и провяливают их при комнатной температуре. Затем сушат и прокаливают, как описано выше. После прокалки на катализатор могут наносить хлорид палладия, предварительно растворенный при нагревании в 25% растворе аммиака, обеспечивая содержание оксида палладия в готовом катализаторе 0,1÷0,5 мас.%. Катализатор провяливают при комнатной температуре, сушат при 120°C и прокаливают при 500°C в течение 3 ч. Полученные катализаторы применяют в способе алкилирования изобутана олефинами при повышенных температуре и давлении. В частном случае алкилирование изобутана олефинами ведут при температуре 60÷100°C, давлении 0,85÷1,7 МПа, отношении изобутан:олефины в сырье 8÷10:1, объемной скорости подачи сырья по олефинам 0,15÷0,2 ч-1 и длительности подачи сырья 24÷36 ч. Технический результат - увеличение срока стабильной работы катализатора и стабильности процесса алкилирования при одновременном повышении конверсии бутиленов и выхода триметилпентанов в углеводородах изо-C8 при осуществлении способа на существующем в отечественной промышленности оборудовании. 4 н. и 4 з.п. ф-лы, 1 табл., 6 пр.

Изобретение относится к нефтехимической промышленности, а именно к способам получения алифатических углеводородов из оксида углерода и водорода, и может быть использовано в нефтепереработке и нефтехимии. Способ получения наноразмерного катализатора трехфазного синтеза Фишера-Тропша, содержащего каталитически активные наночастицы железа, включает растворение прекурсоров - солей железа и калия, в воде, введение полученного раствора в расплавленный парафин со скоростью 20-60 мл/ч, образование катализатора in situ непосредственно в зоне реакции в процессе термообработки компонентов катализатора в токе инертного газа при температуре, превышающей температуру разложения прекурсоров катализатора, и охлаждение в течение 1-6 ч в токе инертного газа. Время термообработки - не более 15 мин. Соотношение компонентов катализатора составляет, мас. %: Fe - 0,5-1,0, К - 0,01-0,02, парафин - остальное. Способ трехфазного синтеза Фишера-Тропша включает получение алифатических углеводородов из оксида углерода и водорода в проточном трехфазном сларри-реакторе при повышенной температуре и давлении в присутствии наноразмерного катализатора с размером частиц 0.7-4 нм, полученного указанным способом, при мольном соотношении оксида углерода и водорода 1:(0,5-3), температуре 240-400°С, давлении 20-30 атм с нагрузкой по газу 2-20 нл/гКат⋅ч. Технический результат, который может быть достигнут при использовании предлагаемого изобретения, заключается в следующем: (1) при использовании предлагаемого состава и метода приготовления Fe-содержащего катализатора наблюдается резкое возрастание его активности, вследствие чего высокие показатели процесса могут быть достигнуты в реакторах меньшего размера; (2) более низкое содержание железа и калия в катализаторе и уменьшение времени термообработки; (3) предотвращение укрупнения и агломерирования частиц катализатора; (4) более высокая производительнось катализатора; (5) более высокая селективность в отношении образования углеводородов С5+. 2. н.п. ф-лы, 4 ил., 1 табл., 4 пр.

Изобретение относится к производству катализаторов для гидропереработки нефтяных фракций, в том числе обессеривания, гидрогенизации и гидродеароматизации. Предложен катализатор гидропереработки нефтяных фракций, полученный in situ путем термического разложения в углеводородном сырье - нефтяных фракциях - прекурсора, анион которого представляет собой никель-тиовольфрамат, или кобальт-тиовольфрамат, или никель-тиомолибдат, или кобальт-тиомолибдат. Катион прекурсора представляет собой ион [RR'R''S]+, где R, R' и R'' - в разных вариантах изобретения представляют собой алкильные, арильные или нафтеновые радикалы соответственно. Технический результат заключается в повышении активности катализатора в реакциях гидродеароматизации би- и полициклических ароматических углеводородов, гидрирования и гидрообессеривания. 3 н.п. ф-лы, 4 табл., 16 пр.

Изобретение относится к способу алкилирования изобутана в трехфазном реакторе с неподвижным слоем катализатора бутилены подают на каждый слой катализатора, а изобутан, взятый в избытке, в верхнюю часть реактора, проводят реакцию алкилирования, отделяют и возвращают на рецикл непрореагировавпшй изобутан и выводят полученный алкилбензин. Температуру и давление выбирают так, чтобы пары изобутана находились в состоянии насыщения, а дополнительное испарение жидкости в реакторе под действием тепла реакции обеспечивало изотермические условия процесса алкилирования. Жидкость стекает свободно без барботирования под действием силы тяжести при объемной скорости, составляющей не более Wmax, равного , и не менее Wmin, равного , где D - сечение слоя катализатора, м, ε - порозность слоя катализатора, εг - паросодержание в реакторе в условиях проведения реакции, ρж - плотность жидкости на входе в реактор, кг/м3, ρг - плотность паров в реакторе в условиях проведения реакции, кг/м3, - максимальная линейная скорость свободно стекающей жидкости Umax, м/с, рассчитываемая исходя из системы уравнений , ,где Н - высота слоя катализатора, м, g - ускорение свободного падения, м/с2, Δрпот - потерянный напор, Па, dp - средний диаметр частицы катализатора, м, μ - вязкость жидкости, Па/с. Минимальная линейная скорость свободно стекающей жидкости Umin, м/с равна , где Ga - критерий Галилея, определяемый по формуле: , μ - динамическая вязкость жидкости, Па/с, ρж - плотность, г/м3; dp - средний диаметр частицы катализатора, м. Технический результат: повышение стабильности процесса при сохранении высокой активности катализатора в течение длительного времени. 1 ил., 1 табл., 7 ил.

Изобретение относится к способу получения из горючих сланцев топливно-энергетических и химических продуктов, в частности моторных топлив. Измельченный горючий сланец (ГС) смешивают с измельченным твердым органическим компонентом, температура максимальной скорости разложения вещества которого отличается от температуры максимальной скорости разложения органического вещества ГС не более чем на 5°С. Проводят их пиролиз при 450-500°С. Выделенную из парогазовой смеси смолу пиролиза дистиллируют с получением бензиновой, дизельной фракций и остатка дистилляции с температурой кипения выше 350°С. Этот остаток смешивают с жидким продуктом нефтяного происхождения с температурой кипения выше 350°С, содержащим стабилизатор эмульсии - асфальтены и 2-6,5% органических соединений серы в расчете на элементарную серу. В полученной смеси эмульгируют водный раствор прекурсора катализатора, из которого после смешения эмульсии с водородом и нагревания в условиях гидроконверсии образуется дисперсный сульфидный катализатор гидроконверсии. После гидроконверсии проводят дистилляцию жидкого продукта гидроконверсии. Бензиновую фракцию гидроконверсии объединяют с бензиновой фракцией, полученной при дистилляции смолы пиролиза, а дизельную фракцию, полученную при гидроконверсии, - с дизельной фракцией, полученной при дистилляции смолы пиролиза. Технический результат - удешевление технологического процесса, повышение выхода дистиллятных фракций, выкипающих до 350°С, снижение в дистиллятных бензиновых фракциях содержаний гетероатомных соединений. 9 з.п. ф-лы, 2 ил., 5 табл., 15 пр.

Изобретение относится к способу переработки тяжелых нефтяных остатков, таких как остатки атмосферно-вакуумной перегонки нефти и остаточные высококипящие фракции термо- и термогидродеструктивных процессов, для получения ценных металлов, в том числе редких и редкоземельных металлов, а также выработкой тепла и/или электроэнергии. Способ включает экстракцию тяжелого нефтяного сырья растворителем - сверхкритическим диоксидом углерода с добавлением от 10 до 30% мас. от массы растворителя жидкого органического модификатора, выбираемого из ряда метанол, этанол, ацетон, ацетонитрил, этилацетат, н-гептан, толуол, о-ксилол, при температуре от 40 до 70°C и давлении от 150 до 400 бар, выбираемых таким образом, чтобы плотность диоксида углерода была не ниже 0,8 г/мл, с получением смолисто-асфальтенового остатка, отгонку растворителя, сжигание смолисто-асфальтенового остатка при температуре от 900 до 1300°C с коэффициентом избытка воздуха от 1,1 до 1,3 и выведение золошлаковый остатка как концентрата ценных металлов. Изобретение обеспечивает одновременное извлечение масляных компонентов с минимальным содержанием металлов и концентрата с максимальным содержанием ценных металлов, в том числе редких и редкоземельных. 3 з.п. ф-лы, 1 ил., 2 табл., 4 пр.

Изобретение относится к способу выделения ценных металлов, содержащихся в тяжелых нефтях и продуктах их переработки. Способ включает в себя обработку тяжелого нефтяного сырья низкотемпературной плазмой, образуемой сверхвысокочастотным (СВЧ) электромагнитным излучением. Способ осуществляется следующим образом. В обогреваемый реактор, снабженный электродом со сквозным отверстием для подачи инертного газа - аргона, загружают тяжелое нефтяное сырье. Через электрод подают инертный газ, после чего включают питание и генерируют плазму. На кончике электрода инициируется пробой с дальнейшим образованием газовых пузырей, температура внутри которых достигает 1500 K. Обработку нефтяного сырья проводят в течение 2 минут. В качестве обрабатываемого образца используется тяжелое нефтяное сырье с плотностью от 900 до 1100 кг/м3. В качестве материала для электрода используется медный стержень. Способ позволяет получить концентрат ценных металлов, таких как Ni, V, Mo, Co, Cu, Zn и других, содержащихся в нефтяном сырье. Технический результат - получение из тяжелого нефтяного сырья твердого продукта - концентрата ценных металлов - и жидких углеводородов с пониженным содержанием металлов. 1 з.п. ф-лы, 3 табл., 3 пр., 1 ил.

Изобретение относится к способам получения золькеталя - смеси изомеров 2,2-диметил-4-гидроксиметил-1,3-диоксолана и 2,2-диметил-5-гидроксиметил-1,3-диоксолана - путем взаимодействия глицерина и ацетона на кислотном гетерогенном катализаторе, например катионообменной смоле КУ2-8 или цеолите бета, и может быть использовано при производстве оксигенатов, улучшающих эксплуатационные свойства топлив для двигателей внутреннего сгорания. По первому варианту получение золькеталя осуществляют путем взаимодействия глицерина и ацетона на гетерогенном кислотном катализаторе в проточном реакторе при температуре 35-55°С и мольном соотношении глицерин:ацетон, равном 1:(5-20). При этом процесс ведут в пленке исходных реагентов, стекающих по поверхности катализатора, а пленку создают за счет орошения слоя катализатора реагентами. По второму варианту способа золькеталь получают путем взаимодействия глицерина и ацетона в присутствии этанола на гетерогенном катализаторе при повышенной температуре и разделения полученных продуктов путем ректификации, на котором сначала выделяют непрореагировавший ацетон в смеси с этанолом, а затем отделяют воду и золькеталь от глицерина, получаемого в кубовом продукте, далее получаемый после разделения глицерин направляют на отдельную дополнительную стадию синтеза золькеталя, на которой процесс проводят в присутствии гомогенного катализатора - серной кислоты при мольном соотношении ацетона и глицерина, равном 6:1, затем продукты реакции с дополнительной стадии синтеза золькеталя нейтрализуют раствором щелочи и объединяют с продуктами реакции, полученными на основной стадии синтеза золькеталя, и снова направляют их на стадию разделения. Технический результат - увеличение производительности процесса и срока службы катализатора. 2 н.п. ф-лы, 2 табл., 16 пр.
Изобретение относится к способам получения золькеталя - смеси изомеров 2,2-диметил-4-гидроксиметил-1,3-диоксолана и 2,2-диметил-1,3-диоксан-5-ола - путем взаимодействия глицерина и ацетона на гетерогенном катализаторе, например катионообменных смолах или цеолитах, и может быть использовано при производстве оксигенатов, улучшающих эксплуатационные свойства топлив для двигателей внутреннего сгорания. Процесс получения золькеталя осуществляется путем взаимодействия глицерина и ацетона на гетерогенном кислотном катализаторе с последующим разделением продуктов реакции методом ректификации в исходный глицерин или в продукты реакции добавляют щелочь в количестве не менее 0,02% от массы взятого глицерина. Технический результат - повышение выхода золькеталя. 11 пр.

Изобретение относится к способу получения углеводородов бензинового ряда из попутного нефтяного газа, включающему стадию синтеза оксигенатов из синтез-газа, полученного из попутного нефтяного газа, в присутствии металлооксидного катализатора, и стадию синтеза углеводородов из полученных оксигенатов в присутствии цеолитного катализатора. Способ характеризуется тем, что в качестве металлооксидного катализатора используют катализатор, полученный таблетированием промышленного медьцинкалюминиевого катализатора MegaMax-507 и оксида алюминия, взятых в массовом соотношении 2:1, с коллоидным графитом в количестве 1% от массы катализатора, после синтеза оксигенатов воднометанольную фракцию отделяют и выводят из процесса, а в реактор синтеза углеводородов дополнительно подают свежий синтез-газ при кратности циркуляции 5-10 об./об. Использование предлагаемого способа позволяет снизить содержание ароматических соединений в смеси углеводородов бензинового ряда, являющейся аналогом газового конденсата, при использовании на первой стадии нетоксичного промышленного катализатора, увеличить срок службы катализатора. 2 табл., 5 пр., 3 ил.

Настоящее изобретение относится к способам переработки углеводородных масел в атмосфере водорода в присутствии дисперсных катализаторов и может быть использовано при переработке тяжелого углеводородного сырья (ТУС) в жидкие углеводородные продукты с более низкой температурой кипения, чем исходное сырье. Для гидроконверсии ТУС с получением жидких углеводородных смесей готовят водный раствор прекурсора катализатора на основе соединения молибдена, эмульгируют его в ТУС, смешивают подготовленное сырье, содержащее эмульгированный прекурсор катализатора, с водородсодержащим газом, нагревают полученную смесь до сульфидирования прекурсора катализатора, проводят гидроконверсию в восходящем потоке сырья и разделяют полученные продуктов в системе сепараторов. Предварительно определяют содержание в сырье остатка вакуумной дистилляции с температурой начала кипения в интервале 500-540°С - С0, содержание С, Н, N, S, О в сырье и С1, H1, N1, S1, O1 в асфальтенах, % мас. Исходя из полученных значений, рассчитывают объемную скорость сырья V, с-1, и температуру Т, К, по следующим формулам: , Fmax=-2,2961ϕ+91,565, где Fmax - предельное критическое значение глубины конверсии, при превышении которого гидроконверсия сопровождается образованием кокса, % мас., А - предэкспоненциальный множитель в уравнении Аррениуса, τ - время контакта, с, рассчитываемое по формуле: τ=1/V, Еа - энергия активации, Дж/моль, ϕ - характеристика сырья, рассчитываемая по формуле: ϕ=(δасф - δсреды)CR, δасф и δсреды - параметры растворимости Гильдебранда асфальтенов и среды соответственно, МПа0,5, рассчитываемые по уравнениям: δсреды=-0,0004 βсреды2 + 0,022 βсреды + 20,34, δасф=-0,0004 βасф2 + 0,022 βасф + 20,34, βсреды = 50(Н-0,125О- 0,2143N-0,0625S)/(0,0833C-1), βасф = 50(H1- 0,125O1- 0,2143N1-0,0625S1)/(0,0833C1-1). Для определения энергии активации Еа проводят два опыта гидроконверсии при двух различных значениях температуры Т1 и Т2, К, определяют содержание остатка вакуумной дистилляции с температурой начала кипения в интервале 500-540°С в продуктах гидроконверсии при температуре Т1 и Т2 - CT1 и СТ2 соответственно, % мас., рассчитывают константы скорости k1 и k2: k1=(lnC0 - lnCT1)/τ, k2=(lnC0 - lnCT2)/τ, и рассчитывают энергию активации по формуле: Еа=R (lnk2 - lnk1)/(1/T1 - 1/Т2), где R - универсальная газовая постоянная. Затем проводят гидроконверсию сырья при выбранных значениях V и Т, соответствующих Fmax. В варианте осуществления изобретения содержание С1, H1, N1, S1, O1 в асфальтенах не определяют, βасф не рассчитывают, а δасф принимают равным 20,3, рассчитывая ϕ по формуле: ϕ=(20,3 - δсреды)CR. Коксовое число CR могут определять расчетом по формулам: CR = 0,7998 α3 - 8,1347 α2 + 35,698 α - 43,251, α = С/6 - Н+N/14. Технический результат - достижение максимальной степени конверсии при минимальном коксообразовании простым способом с проведением малого числа опытов. 2 н. и 2 з.п. ф-лы, 9 табл., 4 пр., 5 ил.

Изобретение относится к способу гидроконверсии тяжелой части матричной нефти с получением жидких углеводородных смесей в присутствии распределенного в сырье молибденсодержащего катализатора при повышенной температуре и давлении водорода. Способ характеризуется тем, что в сырье - тяжелую часть матричной нефти с температурой кипения выше 350°C - вводят водный раствор прекурсора молибденсодержащего катализатора, полученную смесь диспергируют до образования устойчивой обращенной эмульсии, смешивают с водородом, нагревают до температуры реакции 380-460°C и проводят гидрогенизацию в реакторе с восходящим потоком при указанной температуре и давлении 7-10 МПа в присутствии образующегося из прекурсора катализатора, затем из продуктов реакции выделяют дистиллятные фракции с температурой кипения до 250°C и остаток с температурой выше 250°C и указанный остаток в количестве 20-80% в расчете на содержание фракций выше 520°C в исходной тяжелой части матричной нефти возвращают на стадию подготовки сырья как рисайкл, остальную часть указанного остатка направляют на атмосферно-вакуумную дистилляцию с выделением остатка с температурой кипения выше 520°C, направляемого на стадию извлечения металлов, рисайкл при температуре 60-95°C смешивают с указанной тяжелой частью матричной нефти, вводят в нее водный раствор указанного прекурсора и повторяют последующие стадии. Использование предлагаемого способа позволяет исключить введение сторонних модификаторов, повысить глубину конверсии сырья и снизить выход кокса. 5 з.п. ф-лы, 11 пр., 1 табл.

Изобретение относится к способу окислительной конверсии этана в этилен. Способ включает подачу этана в реактор дегидрирования, где он контактирует с катализатором дегидрирования на основе оксидов металлов, каталитическое дегидрирование этана при повышенной температуре, отделение продуктов реакции от восстановленного катализатора, подачу восстановленного катализатора после отделения от продуктов реакции в реактор окисления, окисление восстановленного катализатора кислородом воздуха при повышенной температуре в псевдоожиженном слое, который создается транспортным азотом в реакторе окисления, отделение смеси газов, содержащих отработанный воздух и транспортный азот, от регенерированного окисленного катализатора и его возвращение в реактор дегидрирования. Способ характеризуется тем, что в качестве указанного катализатора используют пентаоксид ванадия на γ-Al2O3, или смешанный оксид металлов Mo-Te-Nb-V на γ-Al2O3, или оксид хрома(III) на γ-Al2O3, или смешанный оксид металлов V-Mo на γ-Al2O3, или смешанный оксид металлов Ni-Mo на γ-Al2O3, кратность циркуляции катализатора, определяемая как отношение массы катализатора к массе сырья, подаваемых в реактор, составляет 10÷15, каталитическое дегидрирование этана осуществляют при температуре 500-700°C, поток газа, транспортирующий регенерированный окисленный катализатор и содержащий отработанный воздух и транспортный азот, выводят из системы как технический азот. Использование предлагаемого способа позволяет обеспечить взрыво- и пожаробезопасность конверсии этана в этилен и достаточную конверсию этана, стабильность процесса, повысить селективность по этилену, получить вместе с этиленом технический азот без использования специальных устройств для разделения воздуха. 2 з.п. ф-лы, 1 ил., 2 табл., 14 пр.

Группа изобретений относится к области переработки нефтяных отходов, а именно нефтяных шламов, в нефтепродукты, и может быть использовано для утилизации нефтяных шламов и получения дистиллятных фракций с температурой не выше 520°C. По первому варианту реализации способа нефтяной шлам, содержащий более 5% мас. минеральных примесей, для гидрогенизационной переработки приводят в контакт с растворителем в экстракторе. Осуществляют предварительную продувку экстрактора инертным газом до удаления воздуха и экстракцию при постоянном перемешивании и продувке инертным газом. Выделяют из экстракта воду, часть растворителя и фракцию легких углеводородов, кипящих до 350°C. Остальную часть экстракта отстаиванием и декантацией разделяют на жидкую органическую фазу и осадок. Последний направляют на повторную экстракцию. Осуществляют горячее фильтрование второго экстракта при избыточном давлении 0,4-0,6 МПа и температуре 45-50°C и смешивают фильтрат с жидкой органической фазой, получая подготовленное сырье. Если нефтяной шлам содержит не более 5% мас. минеральных примесей, то при его подготовке отстаивание и декантацию не осуществляют, сразу направляя часть экстракта, не содержащую легких углеводородов, на горячее фильтрование. Растворитель отделяют от фильтрата или его смеси с жидкой органической фазой ректификацией, а от осадка фильтрования - выпариванием, и возвращают его в цикл. Подготовленное для гидрогенизационной переработки по первому или второму способу сырье направляют в реактор и осуществляют гидрогенизационную переработку указанного сырья в присутствии водорода и катализатора MoS2, синтезированного in situ из водного раствора парамолибдата аммония, диспергированного в подготовленном сырье. Обеспечивается повышение степени утилизации нефтяного шлама, в том числе его наиболее тяжелых углеводородных фракций, с исключением коррозии оборудования и отравления катализатора минеральными примесями, содержащимися в нефтяном шламе, и повышением выхода дистиллятных фракций при гидрогенизационной переработке нефтяного шлама. 4 н.п. ф-лы, 7 табл., 10 пр.

Изобретение относится к способам приготовления катализаторов для нефтехимических процессов, а именно к способу приготовления цеолитсодержащих катализаторов для процесса алкилирования бензола этиленом и способу алкилирования бензола этиленом с применением таких катализаторов, и может быть использовано в получении этилбензола. Катализатор на основе цеолита ZSM-5 после сушки и прокаливания дополнительно обрабатывают водяным паром при атмосферном давлении, температуре 400-600°С в течение 0,5-4 часов, далее обрабатывают водным раствором двухосновной или многоосновной карбоновой кислоты концентрацией 0,05-0,5 моль/дм3 при температуре 50-98°С в течение не менее 0,5-2,0 часов. Полученный катализатор обладает объемом мезопор не менее 0,3 см3/г при среднем диаметре пор не менее 8 нм. Этот катализатор используют в процессе алкилирования бензола этиленом с получением этилбензола путем пропускания смеси бензола с этиленом через реактор. Алкилирование осуществляют при температуре 370-470°С, массовом соотношении бензол : этилен (17-27):1, объемной скорости подачи бензола 15-19 ч-1 и давлении 1,7-2,5 МПа. Технический результат заключается в увеличении концентрации этилбензола и снижении концентрации ксилолов в алкилате. 3 н. и 1 з.п. ф-лы, 3 табл., 17 пр.

Изобретение относится к способам гидроконверсии тяжелого углеводородного сырья (ТУС) в присутствии дисперсных, ультрадисперсных или наноразмерных катализаторов. Указанный способ может быть использован при гидроконверсии тяжелых битуминозных нефтей, природных битумов, высококипящих остатков переработки нефти и предназначен для получения жидких углеводородных продуктов с более низкой температурой кипения, чем исходное сырье. Способ гидроконверсии тяжелого углеводородного сырья включает приготовление водного раствора прекурсора катализатора - полимолибденовой кислоты Hn[H2+2kMo1+mO4+3m+k], где m>7, k>2, n=1-5, имеющего значение pH от 0,5 до 3 (предпочтительно 1-2,5), эмульгирование этого раствора в сырье или его части, смешение подготовленного сырья, содержащего эмульгированный прекурсор катализатора, с водородсодержащим газом, нагрев полученной газожидкостной смеси до сульфидирования прекурсора катализатора, гидроконверсию в восходящем потоке сырья при давлении 5-9 МПа в присутствии образующегося из прекурсора катализатора с размерами частиц менее 100 нм, разделение полученных продуктов в системе сепараторов и рециркуляцию водородсодержащего газа на стадию смешения. В одном варианте перед эмульгированием в сырье вводят экстрагент прекурсора катализатора, выбранный из первичных, вторичных и третичных аминов с числом атомов углерода в алкильных заместителях не менее 8, органических соединений, включающих пиридиновые, хинолиновые или пиррольные группы, и промышленных азотсодержащих экстрагентов. Мольное отношение введенного экстрагента и прекурсора (в пересчете на моль MoO3) - от 2:1 до 20:1, соотношение объемов органической и водной фаз при эмульгировании - от 20:1 до 200:1, предпочтительно от 25:1 до 100:1. В другом варианте углеводородное сырье содержит азотистые основания, являющиеся экстрагентом по отношению к прекурсору катализатора при атомном отношении содержания основного азота в сырье Νоснов к содержанию молибдена, входящего в состав прекурсора, от 20:1 до 100:1 (предпочтительно 40:1-80:1) и содержании Nоснов в углеводородном сырье не менее 0.3%. Вязкость сырья, содержащего экстрагент, при температуре эмульгирования 50-90°С - от 0,5 до 2,5 Па⋅сек. Перед смешением водородсодержащий газ подогревают до 420-450°С. Гидроконверсию осуществляют при 420-450°С, соотношении водород:сырье = (500-1500):1 нл/л, длительности пребывания сырья в реакционной зоне 0,33-2 ч. Предпочтительно часть непревращенного остатка гидроконверсии рециркулируют на стадию смешения, а другую часть используют для регенерации прекурсора катализатора, который рециркулируют на стадию эмульгирования. Технический результат - повышение активности катализатора, конверсии, выхода дистиллятных продуктов, снижение коксообразования. 2 н. и 15 з.п. ф-лы, 2 ил., 3 табл., 7 пр.

Изобретение относится к области получения ароматических углеводородов из спиртов, а именно к катализатору конверсии этанола, метанола или их смеси в ароматические углеводороды. Катализатор содержит цеолит HZSM-5, ZnO и дополнительно содержит Fe2O3 и MgO при следующем составе в расчете на оксиды, мас.%: Al2O3 - 1,0-1,3; Fe2O3 - 0,05-0,10; MgO - 0,05-0,10; ZnO - 0,05-0,10; SiO2 - остальное. Также предложен способ конверсии этанола, метанола или их смеси в ароматические углеводороды. Изобретение позволяет повысить содержание нафталинов в продукте при высокой селективности по ароматическим соединениям. 2 н. и 1 з.п. ф-лы, 1 ил., 4 пр.

Изобретение относится к синтезу основных мономеров синтетического каучука, в частности бутадиена-1,3 и изопрена каталитическим превращением низших спиртов. Описан катализатор получения алкадиенов из низших спиртов состава, мас.%: Na2O - 0,1÷0,3, MgO - 30÷40, SiO2 - остальное и другой катализатор получения алкадиенов из низших спиртов состава, мас.%: K2O - 0,1÷0,3, ZnO - 25÷35, γ-Al2O3 - остальное. Указанные катализаторы используют в одностадийном способе получения алкадиенов - бутадиена-1,3 и изопрена превращением смеси этанола с н-бутанолом или пропанолом при мольном отношении этанола к бутанолу или пропанолу, равном (0,5÷1):1 низших спиртов при повышенной температуре в присутствии инициатора, содержащего пероксид водорода H2O2 и азот N2 при мольном соотношении низшие спирты: Н2О2:N2, равном 1:(0,01÷0,02):(0,5÷1). Технический результат - одностадийное получение из спиртов смеси алкадиенов - бутадиена-1,3 и изопрена, пригодной как мономеры для получения высококачественного синтетического каучука, при сохранении селективности. 4 н.п. ф-лы, 1 табл., 5 пр.

Настоящее изобретение относится к области нефтепереработки тяжелых нефтяных фракций. Изобретение касается способа гидроконверсии тяжелых фракций нефти - исходного сырья, состоит из нулевой стадии и последующих N стадий. Нулевая стадия включает подачу в реактор сырья, прекурсора катализатора - водного раствора соли Мо (VI) или солей Мо и Ni, и водорода при давлении 4-9 МПа при нормальных условиях, реакции сырья и водорода при 420-450°С в присутствии образующегося в реакторе из прекурсора суспендированного наноразмерного молибденового или молибдено-никелевого катализатора, атмосферную или атмосферно-вакуумную перегонку гидрогенизата, вывод низкокипящей фракции с температурой кипения не выше 500°C как продукта и возвращение высококипящей фракции ВКФ или ее части в реактор. Последующие стадии включают подачу в реактор сырья, прекурсора катализатора, возвращенной части ВКФ и водорода, их реакцию, атмосферную указанную перегонку гидрогенизата, вывод низкокипящей фракции как продукта, возвращение части ВКФ в реактор, сжигание при 1000-1300°C или газификацию остальной части ВКФ, после чего уловленные золошлаковые остатки ЗШО подвергают дополнительному окислительному обжигу при 800-900°C и полученный зольный продукт, не содержащий углерода, используют для регенерации прекурсора катализатора и производства промышленного концентрата ванадия и никеля. Количество стадий N определяют по формулам: b d ⋅ ( n n + n m + 1 ) = a + ∑ i = 1 n m b i + b e ⋅ n m , N=nn+nm+1, где nn - число стадий с рециркуляцией, после которых достигается равновесный выход НКФ; nm - число стадий с рециркуляцией после достижения равновесного выхода НКФ, обеспечивающее достижение заданного выхода низкокипящих фракций из исходного сырья; bd - заданный выход низкокипящих фракций, % мас.; а - выход низкокипящих фракций на нулевой стадии, % мас.; bi - выход низкокипящих фракций на i-й стадии до достижения равновесия, % мас., be - выход низкокипящих фракций после достижения равновесия, % мас., be>bd. Технический результат - увеличение выхода низкокипящих фракций, сокращение расхода молибдена, повышение степени извлечения молибдена, ванадия и никеля из раствора, возможность рассчитать необходимый объем реактора, получить промышленный концентрат ванадия и никеля, снизить расход водорода. 2 з.п. ф-лы, 1 ил., 2 табл., 2 пр.

Изобретение относится к области нефтехимии и более конкретно к способу получения синтез-газа, который используется как исходное сырье, например, для синтеза метанола, диметилового эфира, углеводородов по методу Фишера-Тропша. Способ получения синтез-газа включает окислительную конверсию метансодержащего газа при температуре более 650°C в сквознопоточном лифт-реакторе с использованием в качестве окислителя микросферического или дробленого катализатора на основе оксидов металлов, способных к многократным окислительно-восстановительным переходам, при этом катализатор непрерывно проходит через лифт-реактор снизу вверх в потоке метансодержащего газа при времени пребывания сырья в зоне реакции 0,1-10 с, отделение выходящего из реактора катализатора от продукта и регенерацию катализатора путем окисления диоксидом углерода в регенераторе, из которого регенерированный катализатор поступает в реактор. Окислительную конверсию метансодержащего сырья и регенерацию восстановленного катализатора проводят параллельно и непрерывно. Изобретение позволяет повысить удельный съем продукта, снизить энергозатраты на транспорт кислородсодержащего агента, снизить опасность взрыва и возгорания, а также регулировать состав синтез-газа. 6 з.п. ф-лы, 1 табл., 9 пр.

Изобретение относится к получению жидких углеводородных смесей из растительной лигноцеллюлозной биомассы, предназначенных для дальнейшей переработки в моторные топлива и химические продукты. Способ получения жидких углеводородных смесей осуществляют путем гидроконверсии лигноцеллюлозной биомассы в среде растворителя в присутствии прекурсора дисперсного катализатора, способ включает сушку биомассы, ее измельчение, приготовление пасты из измельченной биомассы, растворителя и прекурсора дисперсного катализатора, гидроконверсию приготовленной пасты, разделение полученных продуктов в системе сепараторов, способ отличается тем, что в качестве растворителя используют органический растворитель, имеющий в интервале температур 60-90°C вязкость от 0,5 до 2,5 Па·с, содержащий 2-5,5% маc. серы и 5-25% мас. полициклических ароматических углеводородов и/или их производных, а измельчение биомассы и приготовление указанной пасты осуществляют путем диспергирования с механоактивацией биомассы в среде растворителя, содержащего прекурсор катализатора, при этом предварительно осуществляют нагрев приготовленной пасты в инертной атмосфере до температуры 330-380°C при давлении 0,2-0,5 МПа до удаления основного количества кислорода биомассы в форме СО, CO2 и H2O с последующей гидроконверсией. Технический результат - увеличение выхода жидких продуктов гидроконверсии биомассы, повышение глубины конверсии биомассы, упрощение технологического процесса. 9 з.п. ф-лы, 10 табл., 2 ил., 7 пр.

Изобретение относится к каталитическому превращению возобновляемого сырья - продуктов ферментации биомассы (этанол, сивушные масла) и их смесей с растительным маслом в алкан-ароматическую фракцию C3-C11+, которая может быть использована для получения компонентов топлив. Способ получения алкановых и ароматических углеводородов из продуктов переработки биомассы для получения углеводородных компонентов топлив включает пропускание продуктов переработки биомассы через слой предварительно восстановленного катализатора на основе цеолита ЦВМ, содержащего Pd и Zn, в инертной атмосфере при повышенной температуре. Способ отличается тем, что в качестве катализатора используют Pd-Zn/ЦВМ/Al2O3 катализатор общей формулы 0,6 мас.% Pd-1 мас.% Zn/А12О3/ЦВМ, при этом продукты переработки биомассы, содержащие смесь органических продуктов ферментации или сивушные масла, пропускают через слой катализатора при температуре 280-500˚C и объемной скорости 0,3-6 ч-1. Технический результат: расширение сырьевой базы и способа для получения алкановых и ароматических углеводородов. 4 з.п. ф-лы, 6 табл., 26 пр.

Изобретение относится к катализатору получения синтез-газа в процессе парциального окисления метана, представляющему собой микросферический носитель с нанесенным активным компонентом на основе оксидов металлов, при этом в качестве микросферического носителя используют частицы диаметром от 50 до 160 мкм оксида алюминия и/или алюмосиликата, а в качестве активного компонента - оксид Со или Ni, или Fe, или Mn, или Cu, или Се, или смесь оксидов NiO, Co3O4 и Се2О3, при следующем соотношении компонентов, мас.%: указанный активный компонент - 2-40, оксид алюминия и/или алюмосиликат - остальное. Изобретение также относится к способу получения катализатора и к способу получения синтез-газа в присутствии заявленного катализатора. Технический результат - повышение удельного съема продукта, исключение опасности взрыва и возгорания, низкие энергозатраты, получение синтез-газа с отношением Н2/СО в пределах 1,5-2,5, возможность получения побочного продукта - технического азота при высоких значениях конверсии метансодержащего сырья. 3 н. и 4 з.п. ф-лы, 3 табл., 13 пр.

Изобретение относится к способу получения олефинов C2-C4 из диметилового эфира при повышенной температуре в присутствии катализатора. При этом катализатор предварительно измельчают механически, затем суспендируют в углеводородах, выкипающих при температуре выше 320°C, и диспергируют полученную суспензию ультразвуком до получения частиц катализатора размером не более 1 мкм, затем катализатор восстанавливают в токе гелия при температуре до 400°С и проводят синтез олефинов в условиях протока сырья, содержащего до 100 мас.% диметилового эфира, через реактор типа сларри. Предлагаемый способ обладает высокой производительностью катализатора по выходу целевого продукта. 2 з.п. ф-лы, 14 пр., 1 табл.

Изобретение относится к способу скоростной деструкции остаточных нефтяных продуктов. Способ включает адсорбцию остаточных нефтяных продуктов в порах углеродного сорбента и обработку сверхвысокочастотным излучением при индуцированной температуре до 600°C в потоке аргона или диоксида углерода. При этом в качестве остаточных нефтяных продуктов используют пек или деасфальтизат, взятые в равных количествах с углеродным сорбентом, а обработку сверхвысокочастотным излучением проводят в течение 10-20 минут. Как правило, в качестве углеродного сорбента используют дробленый древесный уголь с тангенсом угла диэлектрических потерь, равном 8,8. Предлагаемое изобретение позволяет простым способом получить водород, дополнительное количество ценных жидких углеводородов и концентрата редких металлов. 1 з.п. ф-лы, 3 ил., 4 табл., 6 пр.

Изобретение относится к области нефтехимии и может быть использовано для синтеза метанола, диметилового эфира, углеводородов по методу Фишера-Тропша. Метансодержащее сырьё подвергают окислительной конверсии при температуре 650-1100°C в лифт-реакторе. В качестве окислителя используют микросферический или дроблёный катализатор на основе оксидов металлов, способных к многократным окислительно-восстановительным переходам. Восстановленный катализатор регенерируют путем его окисления в регенераторе и снова направляют в реактор снизу вверх в потоке метансодержащего сырья, который работает в режиме сквозного потока и времени пребывания сырья в зоне реакции 0,1-10 с. Выходящий из реактора восстановленный катализатор отделяют от продукта - синтез-газа - и направляют в регенератор. Регенерацию катализатора проводят в псевдоожиженном, или форсированном псевдоожиженном, или полусквозном потоке путем окисления кислородсодержащим агентом. Полученный синтез-газ имеет отношение Н2/СО в пределах 7,5-2,5. Повышается удельный съём продукта, обеспечивается возможность использования углеводородного сырья, содержащего диоксид углерода, при снижении опасности взрыва и возгорания, низких энергозатратах. 4 з.п. ф-лы, 3 табл., 13 пр.

Предлагаемое изобретение относится к способу получения диметилового эфира, который используют в газовых приборах бытового назначения и как пропеллент для аэрозолей, методом одностадийного синтеза и его выделения. Способ включает подачу синтез-газа, проведение реакции в реакторе адиабатического типа при повышенной температуре и давлении в присутствии бифункционального катализатора, охлаждение и сепарацию полученных контактных газов на газовую и жидкую фазы с выделением диметилового эфира из газовой фазы путем абсорбции метанолом с получением абсорбента, насыщенного оксидом углерода (IV) и диметиловым эфиром, и метанола из жидкой фазы путем ректификации. При этом синтез проводят в многоступенчатом реакторе в присутствии бифункционального катализатора двух типов, один из которых обладает более выраженной активностью в отношении синтеза метанола - тип 1, а другой - более выраженной активностью в отношении его дегидратации - тип 2; до подачи в реактор синтез-газ смешивают с газами рецикла, часть полученной смеси нагревают до 255-265°C, впрыскивают в нее метанол, выделенный из жидкой фазы, и подают на первую ступень реактора, другую часть - охлаждают и подают в виде квенчей на каждые последующие ступени реактора в основной газовый поток в количестве, обеспечивающем температуру газа на входе в слой катализатора, расположенного на этих ступенях, 240-250°С; весь поток газовой фазы, выделенный после сепарации, направляют на абсорбцию диметилового эфира, затем полученный насыщенный абсорбент направляют на стриппинг оксида углерода (IV) с получением смеси диметилового эфира и метанола, которую в свою очередь подвергают ректификации с получением дистиллята - диметилового эфира с содержанием примесей от 3,0 до 10,0% мас. и кубового остатка - метанола, который снова направляют на абсорбцию. Способ позволяет простым методом получить целевой продукт с высоким выходом и селективностью. 5 з.п. ф-лы, 1 ил., 6 табл., 5 пр.
Изобретение относится к способу каталитического пиролиза хлористого метила в процессе получения низших олефинов C2-C4, преимущественно этилена и пропилена, в присутствии силикоалюмофосфатного катализатора типа SAPO. Способ характеризуется тем, что пиролиз хлористого метила проводят на катализаторе со степенью зауглероживания в пределах 2,6-5,2 мас.%, которую получают в течение 60-150 минут работы реактора, по истечении которых для поддержания полученной степени зауглероживания катализатор постоянно отводят в регенератор, удаляют избыточный углерод выжиганием воздухом при температуре 550°C, после чего возвращают в реактор, обеспечивая при этом постоянную циркуляцию зауглероженного катализатора из реактора пиролиза в регенератор и обратно. Использование способа позволяет повысить селективность процесса получения низших олефинов за счет увеличения селективности катализатора, используемого в процессе пиролиза хлористого метила. 2 пр., 2 табл.

Изобретение относится к способу получения оксигенатов, повышающих эксплуатационные свойства топлив для двигателей внутреннего сгорания, в котором взаимодействие глицерина с ацетоном происходит на кислотном катализаторе, причем процесс происходит на гетерогенном катализаторе в одну стадию в проточном реакторе при регулировке подачи реагентов в соотношении глицерин: ацетон (1):(5-20) и поддержании в реакторе температуры от 35°С до 55°С, объемной скорости 0.5-1.5 ч-1 и атмосферного давления с получением золькеталя как основного продукта, и возвращении непрореагировавшего ацетона в реактор. Также описывается способ получения оксигенатов, повышающих эксплуатационные свойства топлив для двигателей внутреннего сгорания, в котором взаимодействие глицерина с ацетоном происходит на кислотном катализаторе, причем при взаимодействии глицерина с ацетоном дополнительно используют трет-бутанол, процесс происходит на гетерогенном катализаторе в одну стадию в проточном реакторе при регулировке подачи реагентов в соотношении глицерин:трет-бутанол:ацетон (1):(3-5):(5-20) и поддержании в реакторе температуры от 35°С до 55°С, объемной скорости 0.5-1.5 ч-1 и атмосферного давления с получением золькеталя и трет-бутилового эфира золькеталя как основных продуктов, и возвращении непрореагировавших ацетона и трет-бутанола в реактор.Техническим результатом настоящего изобретения является создание эффективных способов получения экологически безопасных высокооктановых оксигенатных добавок к автомобильным и авиационным топливам, высокоцетановых оксигенатных добавок к дизельным топливам, не содержащих глицерина за счет обеспечения полной конверсии глицерина при одностадийности процесса. 2 н.п. ф-лы, 1 ил., 4 табл.
Изобретение относится к области химии и может быть использовано в нефтепереработке с целью утилизации наиболее широко распространенных полимерных отходов и с получением из них ценных продуктов нефтепереработки. Способ включает совмещение полимерных отходов и нефтяных фракций, введение полученной смеси непосредственно в реактор и осуществление крекинга при повышенной температуре и атмосферном давлении, при этом в качестве нефтяных фракций используют вакуумный дистиллят, в качестве реактора - реактор каталитического крекинга, указанное совмещение осуществляют растворением полимерных отходов, взятых в количестве 1-7 мас.% по отношению к исходному сырью, в нефтяных фракциях при температуре, обеспечивающей полное растворение в них полимерных отходов, крекинг осуществляют при температуре 475-525°С при массовой скорости подачи сырья 1,8-7,0 ч-1 в присутствии цеолитсодержащего катализатора типа Y, содержащего в качестве обменных катионов редкоземельные элементы. Изобретение позволяет увеличить выход бензиновой фракции дистиллятов до 53 мас.% и легкого газойля до 24 мас.% и получить дополнительное количество моторных топлив и сырья для нефтехимии - низших углеводородных газов состава С2-С4, использовать действующие установки, имеющиеся в отечественной промышленности, снизить загрязнение окружающей среды полимерными отходами, получить бензиновую фракцию с высоким октановым числом (не ниже 91,0). 1 з.п. ф-лы, 2 табл., 12 пр.

 


Наверх