Патенты автора Катенин Владимир Александрович (RU)

Изобретение относится к области швартовки судов с использованием спутниковой навигационной системы. Система швартовки судна включает в себя приемник спутниковой навигационной системы (СНС), рулевой привод, носовое подруливающее устройство, датчик руля, датчик тяги, блок программного управления, датчик угловой скорости и вычислителя, в который вводят из приемника СНС сигналы координат судна, скорость хода судна, производную скорости хода судна и путевой угол, из датчика руля - сигнал угла руля, из датчика угловой скорости - сигнал угловой скорости и из датчика тяги - сигнал тяги, дополнительно используют радары и регулятор оборотов гребного винта. Вводят в блок программного управления сигналы координат центральной точки швартовки судна и длину вектора путевого угла в точке начала второго этапа швартовки, по сигналам координат судна и сигналам координат центральной точки швартовки судна в вычислителе формируют сигналы заданного путевого угла и длины вектора путевого угла. Сигнал длины вектора путевого угла вводят в блок программного управления, где формируют в зависимости от длины вектора путевого угла сигналы программной скорости хода судна, программного курса и разности сигналов длины вектора путевого угла и длины вектора путевого угла точки начала второго этапа швартовки, сравнивают эти сигналы, если разность сигналов положительна, в вычислителе формируют три сигнала управления первого этапа швартовки. При этом посредством радаров измеряют расстояние, и/или пеленг, и/или курс, по крайней мере, до трех оптических угловых отражателей, установленных на причальном основании с известными координатами, рассчитывают координаты точки установки радара на судне с последующим их преобразованием в географическую систему координат, вычисляют координаты точки установки антенны приемника СНС, вычисляют эталонные координаты точки установки антенны приемника СНС, вычисляют погрешности расстояний, пеленга и курса, вычисляют поправки, которые вводят в вычислитель. Достигается повышение точности швартовки. 2 н.п. ф-лы, 10 ил.

Использование: для определения поправок к глубинам. Сущность изобретения заключается в том, что устройство для определения поправок к глубинам, измеренным эхолотом при съемке рельефа дна акватории, содержащее передатчик и измерительный приемный блок, подключенные соответственно к излучающей и приемной антеннам, регистратор и блок управления, соединенный с измерительным приемным блоком, базу с датчиками гидростатического давления и температуры, выходы которых через блок управления соединены с входом блока определения поправок к глубинам, измеренным эхолотом, вход которого через блок управления соединен с выходом приемоизмерительного блока, а выход соединен с входом регистратора, датчики горизонтальных и вертикальных перемещений, датчик измерения скорости распространения звука в воде, измеритель относительной скорости, магнитный компас и гироазимутгоризонткомпас, приемоиндикатор спутниковой навигационной системы, прт этом база установлена на выносной штанге параллельно днищу судна и жестко сочленена с корпусом судна, приемопередающий блок, установленный на базе, выполнен в виде лазерного излучателя и оптического приемника, отличающееся тем, что база выполнена в виде самоходного глубоководного аппарата, оснащенного планировщиком, модемом гидроакустической связи, отражателем, профилографом для определения ровной поверхности грунта, классификатором грунта, датчиком определения прозрачности воды, блоком пересчета измеренных глубин с учетом прозрачности воды, измеренной по крайней мере на трех горизонтах по глубине. Технический результат: обеспечение возможности получения достоверных измерений при проведении тарировки эхолотов.

Устройство относится к области морского приборостроения и предназначено для использования в качестве относительного и абсолютного лага, а также измерителя скорости течений. Лазерный судовой измеритель скорости содержит передающий и приемный каналы, вычислительное устройство, опорный фотоприемник, устройство отвода оптической энергии лазерного передатчика в опорный приемник и контрольный датчик направления излучения. Передающий и приемный каналы размещены в герметичном корпусе с защитным окном в нижнем основании. Передающий канал содержит: полупроводниковый модуль с дифракционно-оптическим делением лазерного пучка, полупроводниковый модуль, дифракционную решетку, первый объектив, пространственный фильтр и второй объектив. Приемный канал содержит фокусирующий объектив и 5 наборов устройств: диафрагма, фотодиод, предварительный усилитель и преобразователь доплеровского сигнала. Преобразователи подключены к вычислительному устройству. Технический результат заключается в увеличении точности измерений. 2 ил.

Изобретение относится к разведке с использованием магнитных полей и может быть использовано для обнаружения подводных ферромагнитных объектов. Сущность: буксируют два источника магнитного поля вдоль полосы обследования. Причем границы полосы обследования задают путем рассеивания ферромагнитного материла, сформированного в виде масс в 1 м3, размещенных на расстоянии 80-170 м друг от друга вдоль оси границы с образованием четырехугольника. Осуществляют посредством блока управления попеременной работы буксируемых источников магнитного поля регистрацию суммарного магнитного поля буксируемых источников и ферромагнитных масс первичным трехкомпонентным преобразователем магнитного поля. Усиливают и преобразуют зарегистрированные сигналы суммарного магнитного поля буксируемых источников и ферромагнитных масс вторичным преобразователем. Передают усиленные и преобразованные сигналы суммарного магнитного поля буксируемых источников и ферромагнитных масс в вычислительный блок. В вычислительном блоке определяется сигнал, обусловленный наличием ферромагнитных масс или подводного ферромагнитного объекта. Передают сигнал с вычислительного блока на исполнительный блок с последующей его ретрансляцией в блок управления. Блок управления обеспечивает движение буксируемых источников магнитного поля в заданных границах полосы обследования путем определения координат сигнала в навигационном модуле. Предварительно выполняют батиметрическую съемку, посредством многолучевого эхолота, акустическое зондирование рельефа дна гидролокатором бокового обзора, по эхо и теневым контактам выявляют обнаруженные подводные объекты, выполняют картирование рельефа дна с выявлением линий водораздела и водосливных линий, дополнительно выполняют зондирование обнаруженного объекта, посредством лазерно-лучевого источника с передачей изображения на видеосистему с выделением границ на изображении посредством оператора Собела и детектора Канне. Система для обнаружения подводных ферромагнитных объектов состоит из измерительной системы магнитного поля, которая включает два буксируемых источника магнитного поля, подключенных посредством кабель-тросов соответственно к блоку питания через блок управления, два буксируемых первичных трехкомпонентных преобразователя магнитного поля, подключенных посредством кабель-тросов соответственно ко вторичному преобразователю через блок управления, вычислительный блок, вход которого подключен к выходу вторичного преобразователя, а выход подключен к входу исполнительного блока, многолучевого эхолота и гидролокатора бокового обзора, которые подключены через блок управления и вторичный преобразователь к вычислительному блоку, отличающаяся тем, что введены лазерно-лучевой модуль, видеосистема, блок обработки изображений, который через блок управления соединен с лазерно-лучевым модулем, многолучевым эхолотом, гидролокатором бокового обзора и вычислителем. Технический результат: повышение достоверности обнаружения подводных объектов. 2 н. и 1 з.п. ф-лы, 6 ил.

Изобретение относится к военной технике и может быть использовано в вооружении самоходных объектов. Проводят из неподвижного танка и в движении поиск, обнаружение, опознавание целей, слежение за целями днем и ночью, автоматически заряжают пушку выбранным типом боеприпаса, автоматически вычисляют и вводят поправки на температуру воздуха, износ канала ствола, атмосферное давление, боковой ветер, дополнительно вводят блок оценки эффективности стрельбы, производят анализ сигналов от лазерного дальномера и блока переключения баллистик, выбирают тип выстрела в зависимости от замеренной дальности до цели и дальности эффективного огня, информируют наводчика прерывистым миганием индикатора «выбранный тип баллистики» о нецелесообразности выбора данного типа боеприпаса на замеренной дальности через блок индикации в поле зрения прицела-дальномера - прибора наведения, отличающийся тем, что при групповой стрельбе из вооружения самоходных объектов устанавливают порядок выстрелов, путем определения минимального интервала времени от момента первого выстрела отдельного самоходного объекта до момента разрыва последнего снаряда. Изобретение позволяет повысить вероятность поражения цели. 1 ил.

Группа изобретений относится к области судовождения, а именно к способу управления движением судна с компенсацией медленно меняющихся внешних возмущений и системе, использующей данный способ. Для управления движением судна с компенсацией медленно меняющихся внешних возмущений используют задатчик курсового угла, приемник спутниковой навигационной системы, рулевой привод, электронную модель движения судна, регулятор-сумматор, интегратор, функциональный преобразователь, датчики угловых ускорений и угловых скоростей, судовой измеритель скорости, судовой многолучевой эхолот, электронную картографическую навигационную информационную систему. Получают управляющий сигнал на вход рулевого привода, используя следующие сигналы: заданного курса и оценки угла курса, невязки, угла перекладки руля, курса с приемника спутниковой навигационной системы. Достигается повышение точности управления движением судна по заданной траектории. 2 н.п. ф-лы, 1 ил.

Изобретение может быть использовано для определения океанографических характеристик и выявления их пространственного распределения. Сущность: система включает подспутниковые (судовые) и спутниковые средства измерений океанографических характеристик. Подспутниковые средства измерений представлены пятью наборами измерительных датчиков и комплексных измерительных устройств, первый (1) из которых размещен на носовой части судна, находящейся под водой, второй (2) - на носовой части судна, находящейся над водой, третий (3) - на борту судна, четвертый (18) - на дрейфующих буях, а пятый (19) - на спускаемых за борт зондах. Первый (1) набор состоит из датчиков температуры, электропроводности и давления морской воды, концентрации кислорода, показателя рассеяния света в воде, устройства (12) забора забортной морской воды. Второй (2) набор состоит из датчиков температуры, влажности и давления атмосферного воздуха, направления и скорости приводного ветра, измерителя флюоресценции фитопланктона и растворенного (желтого) органического вещества, измерителя (радиометра) радиационной температуры морской поверхности и измерителя спектральных яркости неба, яркости моря и облученности морской поверхности солнечным излучением. Третий (3) набор состоит из измерителя спектрального показателя ослабления света морской воды, измерителя флюоресценции хлорофилла фитопланктона и растворенного (желтого) органического вещества, измерителя концентрации хлорофилла и растворенного (желтого) органического вещества, измерителя концентрации каротиноидов, феофитина, углерода. Четвертый (18) набор состоит из датчиков измерения температуры воздуха, скорости и направления ветра, атмосферного давления, электропроводности воды, температуры воды в поверхностном слое, гидростатического давления, высоты, скорости, периода и направления морских волн. Пятый (19) набор состоит из устройств измерения составляющих вектора подводных течений, скорости распространения звука, температуры, относительной электропроводности, гидростатического давления, концентрации растворенного кислорода, показателя ионов водорода, пороговой чувствительности концентрации сульфидов на двенадцати горизонтах до глубины 250 м. Спутниковые средства измерений включают устройство (6) определения координат судна и устройство (8) определения координат луча сканирования водной поверхности искусственным спутником Земли. Показания подспутниковых средств измерений используют при корректировке спутниковых данных в устройстве (11) корректировки спутниковой информации и хранения океанографических данных. Технический результат: повышение информативности и достоверности при определении океанографических характеристик и выявлении их пространственного распределения. 2 н.п. ф-лы, 1 ил.

Изобретение относится к устройствам для подводных геофизических исследований морей и океанов. Заякоренная профилирующая подводная обсерватория сочленена с диспетчерской станцией и состоит из: подповерхностного буя, заякоренного с помощью стального буйрепа, который служит ходовым тросом для профилирующего носителя, содержащего комплект измерительных датчиков, модуль центрального микроконтроллера, электропривод, и передвигающегося по ходовому тросу; системы цифровой связи посредством бесконтактной индуктивной врезки в ходовой трос, поверхностного буя-вехи с модемами передачи данных и телеметрической информации по радиоканалу, гидроакустического размыкателя якорного балласта. На ходовом тросе над гидроакустическим размыкателем якорного балласта закреплена нижняя плавучесть шарообразной формы, внутри которой размещен модем гидроакустического канала связи, электропривод, сочлененный с телескопическим устройством, в оконечности которого установлен сейсмометр. Профилирующий носитель дополнительно содержит датчики содержания углеводородов, углекислого газа, альфа-, бета- и гамма-радиоактивности. Улучшаются условия эксплуатации, расширяются функциональные возможности подводной обсерватории. 2 ил.

Система для освещения подводной обстановки относится к специальной технике и может быть использована для обнаружения и опознания подводных объектов, а также для сигнализации и оповещения о появлении на акваториях морских объектов хозяйственной деятельности (акватории портов, морские терминалы по добыче и транспортировке углеводородов, гидротехнические сооружения и т.д.) неизвестных малогабаритных подвижных аппаратов (МПА) или подводных пловцов (ПП), а также для обнаружения и сопровождения айсбергов. Задачей изобретения является возможность оперативно определять место появления неизвестного подводного объекта, идентифицировать подводный объект и визуально отображать на мониторе диспетчерской станции морского объекта хозяйственной деятельности (МОХД) появление несанкционированного подводного объекта. Система для освещения подводной обстановки, состоящая из группы многолучевых эхолотов, гидроакустические приемопередатчики которых посредством приемопередающей антенны формируют n-лучей с возможностью секторного обзора на акватории расположения объекта морской хозяйственной деятельности, при этом приемопередатчики соединены с блоком обработки акустических сигналов, установленным на диспетчерском пункте морского объекта хозяйственной деятельности, который соединен с процессором с программным обеспечением автоматического обнаружения и сопровождения, который соединен с устройством отображения информации, при этом каждый приемопередатчик соединен при помощи оптоволоконного кабеля с блоком обработки акустических сигналов, установленным на диспетчерской станции морского объекта хозяйственной деятельности, излучающий и приемный каналы соединены с блоком обработки акустических сигналов, предназначенным для формирования излучающих сигналов, регистрации и обработки принятых сигналов соответственно, блок обработки акустических сигналов соединен с процессором с программным обеспечением автоматического обнаружения и сопровождения, соединенным с устройством отображения информации, отличающаяся тем, что каждый многолучевой эхолот содержит параметрический профилограф, причем антенны накачки параметрического профилографа размещают на дрейфующих или заякоренных буях на разных горизонтах по глубине акватории на расстояниях не более 8000 метров друг от друга. 2 ил.

Изобретение относится к области использования навигационных и промерных эхолотов и может быть применено для их тарировки. Техническим результатом изобретения является повышение точности тарирования эхолотов и снижение трудозатрат на ее проведение. Технический результат достигается тем, что для тарировки эхолота предлагается использовать лазерное тарирующее устройство, работающее в сине-зеленом диапазоне частотного спектра излучения. Лазерный импульс в этом диапазоне способен проникать сквозь водную среду и, отразившись от дна, приниматься фотоприемным устройством. Зная скорость прохождения лазерного излучения через воду и время прохождения прямого и отраженного сигнала, представляется возможным определить глубину места под судном с более высокой точностью, чем навигационным эхолотом. 1 ил.

Изобретение относится к области использования спутниковых навигационных систем в высоких широтах. Технический результат - прием сигналов спутниковых навигационных систем второго поколения для производства подледной обсервации в произвольный момент времени. Устройство подледного приема сигналов спутниковых навигационных систем (СНС) объектом, находящимся в подледном положении, включающее приледнение объекта и разрушение льда в зоне расположения антенного устройства, отличающееся тем, что содержит выдвижное устройство, представляющее собой полую трубу диаметром до 150 мм, на верхней части которой крепится перфорированный тор, а внутри проложены паропровод и трубопровод с воздухом высокого давления (ВВД), при этом перфорированный тор содержит смесительные сопла-форсунки для направленного выхода пара, с целью сквозного разрушения (плавления) льда снизу, для образования отверстия и подачи воздуха высокого давления с целью удаления морской воды из созданного отверстия для прохода антенны наружу на заданную высоту, определяемую датчиком контакта выдвижного устройства со льдом, при этом выдвижное устройство перемещается в вертикальной плоскости и вращается с помощью редуктора от электромотора и устанавливается в заданном месте на рубке подводного объекта, и содержит антенну для приема сигналов СНС, выход антенны соединен с входом вычислительного блока, осуществляющего определение высоты подъема выдвижного устройства, выбор оптимального режима подачи теплоносителя и его регулирования в зависимости от заданного режима паробурения, а также расчет обсервованных координат места подводного объекта. 2 з.п. ф-лы, 6 ил.

Изобретение относится к области нефтегазовой геологии и может быть использовано при поиске углеводородов. Сущность: выполняют съемку рельефа акватории. По результатам съемки выявляют затопленные речные долины, пересекающие континентальный шельф. Зондируют донные осадки акустическими импульсами. Восстанавливают слои грунта и донных отложений до глубин 2-4 км. Анализируют структурно-денудационные формы рельефа и выделяют терригенные отложения. При выявлении предпосылок существования нефтегазовых участков выполняют зондирование грунта когерентным импульсным протонным спиновым эхом. Выполняют томографическое восстановление изображения исследуемого геологического разреза грунта на уровне призматических кристаллов. Дополнительно устанавливают не менее двух донных сейсмических станций для регистрации и анализа микросейсмических волн. С помощью пенетрометров, размещенных на указанных сейсмических станциях, определяют коэффициенты сопротивления и трения грунта, по которым определяют его прочностные характеристики. После этого отбирают пробы горных пород и растительности вдоль водотоков. Пробы горных пород разделяют на две фракции - более 0,1 мм и менее 0,1 мм. Первую фракцию анализируют на содержание Si, Al, Ti, Y, a вторую - на содержание Hg. Пробы растительности анализируют на содержание Ba, Cu, Pb, Zn, Ag. Результаты анализа фракции более 0,1 мм и проб растительности пересчитывают на соответствующие аддитивные показатели нормированных концентраций. Строят карты распределения указанных аддитивных показателей и Hg. Отождествляют объекты, характеризующиеся распределением аномальных значений аддитивных показателей и Hg в ряду Si, Al, Ti, Y-Ba, Cu, Pb, Zn, Ag-Hg-Ba, Cu, Pb, Zn, Ag-Si, Al, Ti, Y, с нефтегазоперспективными участками. Анализируют водную толщу на содержание метана. Определяют координаты газового образования. При выявлении разливов транспортируемого жидкого продукта с образованием нефтяного пятна процессы растекания и переноса нефти рассчитывают с учетом гидродинамических параметров водной среды. При зондировании грунта путем воздействия когерентным импульсным протонным спиновым эхом дополнительно зондируют гидросферу, при этом исследуемую среду подвергают одновременному воздействию СВЧ-излучения и переменного магнитного поля в области частот ядерно-магнитного резонанса, при этом СВЧ-излучение и постоянное магнитное поле поддерживаются в условиях резонанса, при этом измеряют уменьшение интенсивности одного сверхтонкого перехода при одновременном насыщении за счет большой мощности соответствующей СВЧ-частоты второго сверхтонкого перехода, дополнительно электронный парамагнитный резонанс подвергают оптическому детектированию, при этом спиновое состояние радикальной пары (синглетное или триплетное) изменяют вынужденным путем, вызывая спиновые переходы партнеров пары под действием резонансного микроволнового поля во внешнем магнитом поле, спектр электронного магнитного резонанса при этом регистрируется путем изменения выхода продуктов из радикальной пары аналитическим методом. Технический результат: расширение функциональных возможностей способа, повышение достоверности выявления перспективных нефтегазовых участков. 1 ил.

Изобретение относится к автоматизированным системам регистрации и документирования. Судовая автоматизированная система регистрации данных телеметрического контроля содержит судовую ЭВМ обработки информации, соединенную своим входом-выходом с контроллерами сбора и преобразования данных, которые своими входами соединены с выходами датчика телеметрической информации, датчиками звуковой информации, РЛС, видеокамерой наружного обзора. Судовая ЭВМ обработки информации своим входом-выходом соединена с входом-выходом монитора и еще одним выходом соединена с входом контроллера автомата сброса контейнера с аппаратурой регистрации, который своим выходом соединен с входом автомата сброса контейнера с аппаратурой регистрации, который своими входами соединен с выходом датчика давления и датчика температуры. Автомат сброса контейнера с аппаратурой регистрации своим выходом соединен с механизмом сброса контейнера с аппаратурой регистрации, который своим вторым входом соединен с выходом устройства ручного сброса контейнера с аппаратурой регистрации, которое своим входом соединено с выходом кодового замка. Контейнер с аппаратурой регистрации соединен с еще одним входом-выходом судовой ЭВМ и который этим же входом-выходом соединен с входом-выходом блока регистрации данных на накопитель. Система содержит преобразователь навигационных параметров, который своими входами соединен с выходами навигационных датчиков измерения скорости, курса, координат. Преобразователь своим выходом соединен с входом блока регистрации данных на накопитель, преобразователь картографической информации, который своим входом соединен с выходом телевизионной камеры, установленной над рабочим полем автопрокладчика, а своим выходом соединен с входом блока регистрации данных на накопитель. Монитор своими входами соединен с выходами датчиков измерения глубины, углов крена и дифферента, и глубинометра. Входы автопрокладчика соединены с выходами навигационных датчиков измерения курса, скорости и координат. Достигается расширение функциональных возможностей систем аварийной сигнализации, повышение оперативности передачи сигналов оповещения и поиска контейнера, повышение объективности анализа обстановки. 2 з.п. ф-лы, 3 ил.
Изобретение относится к нефтегазовой промышленности, в частности к устройствам, предназначенным для защиты буровых объектов от разрушения при движении ледяных полей. Устройство выполнено в виде защитного барьера, установленного на дне водоема по периметру бурового объекта и закрепленного на дне сваями. При этом сваи выполнены в виде якоря-балласта конусообразной формы из железобетона. Сваи соединены в верхней своей части со щитами, щиты соединены с плавательным средством с нулевой плавучестью на его торцевых поверхностях. В средней своей части щиты соединены между собой посредством стопорных элементов, верхние части щитов соединены между собой посредством упорных элементов. Плавательное средство снабжено в нижней части стабилизирующим устройством, выполненным в виде металлического каркаса пирамидальной формы. Позволяет повысить надежность защиты морского объекта хозяйственной деятельности от воздействия ледовых образований. 1 ил.

Изобретение относится к проведению аварийно-спасательных работ на море, и может быть использовано при подъеме затонувших судов, подводных объектов, включая подводные лодки и аппараты, и морских платформ для добычи углеводородов

Изобретение относится к устройствам, предназначенным для океанографических и геологических исследований, ремонтных работ, установки и обслуживания подводного оборудования

Изобретение относится к области гидроакустики и может быть использовано для восстановления рельефа морского дна

Изобретение относится к устройствам мониторинга и очистки акваторий от различных загрязнений

Изобретение относится к техническим средствам судовождения

Изобретение относится к механической очистке воды от нефтепродуктов

Изобретение относится к магистральному транспорту жидкости, преимущественно газонасыщенных нефтей, нестабильного газового конденсата, и может быть использовано при ремонте магистральных трубопроводов, уложенных на дне водоемов

Изобретение относится к области навигации, а более конкретно к способам навигации автономных необитаемых подводных аппаратов

Изобретение относится к области судостроения, а именно к кораблям гидрографической и патрульной службы, предназначенным для всепогодного несения службы и эффективного решения научно-исследовательских, поисковых и боевых задач в открытом океане

Изобретение относится к водному транспорту

Изобретение относится к области защиты буровых объектов при движении ледяных полей и может быть применено для разрушения ледяного покрова

Изобретение относится к технике электрической связи и может найти применение при прокладке каблей в условиях Арктики и Антарктики

Изобретение относится к области обустройства и освоения морских нефтегазовых месторождений, а более конкретно к способам и средствам предупреждения аварийных ситуаций
Изобретение относится к магистральному транспорту жидкости, преимущественно газонасыщенных нефтей, нестабильного газового конденсата, и может быть использовано при ремонте магистральных трубопроводов, уложенных на дне водоемов

Изобретение относится к области судового приборостроения и может быть использовано для определения курса, угловой скорости поворота, местоположения носа и кормы судна относительно оси и кромок судового хода при прохождении сложных участков (изгибов) реки со свальными течениями

Изобретение относится к области судового приборостроения и может быть использовано при проектировании адаптивных авторулевых на судах различных классов

Изобретение относится к плавучим средствам навигационного оборудования - морскому бую ледовому, предназначенному для ограждения фарватеров и предотвращению навигационных опасностей на акваториях, покрывающихся льдом в осенне-зимний и весенний периоды

Изобретение относится к области подводной навигации и может быть применено для определения истинного курса подводного объекта на горизонте его плавания с целью коррекции бортового навигационного комплекса

Изобретение относится к области радиотехники, а именно: для использования спутниковых навигационных систем (СНС), и может быть применено для коррекции инерциальной навигационной системы (ИНС) подводного объекта при нахождении в Северном Ледовитом океане (СЛО) подо льдом на горизонте плавания

Изобретение относится к системам связи и навигации и может быть использовано для оперативной доставки команд управления и коррекции инерциальных навигационных комплексов автономных обитаемых подводных объектов (ПО), например, подводных аппаратов, находящихся на рабочих глубинах погружения, а также для доставки служебной информации с погруженных ПО в центры управления (подводного, надводного, наземного или воздушного базирования)

Изобретение относится к области электротехники

Изобретение относится к лазерной технике и может быть использовано для защиты подводных объектов от активных лазерных систем поиска

Изобретение относится к автономным устройствам энергоснабжения средств навигационного оборудования (СНО) берегового и морского базирования как источника питания для подзарядки накопителей энергии (аккумуляторных батарей) с термоэлектрическим преобразованием энергии Солнца

Изобретение относится к области навигации, в частности к определению истинного курса (ИК) корабля на акватории базы (ошвартованного у причала, стоящего на якоре и т.д.) для оперативного ввода навигационного комплекса корабля в шатанный режим работы и определения поправки к ИК корабля, выработанному бортовым курсоуказателем

Изобретение относится к области приборостроения и может быть использовано при проектировании интегрированных навигационных систем

Изобретение относится к области морской геодезии и может быть использовано для определения уклонения отвесной линии (УОЛ) в океане на подвижном объекте в целях навигационно-гидрографического обеспечения его навигационного комплекса

Изобретение относится к области радиотехники, а именно для использования спутниковых навигационных систем (СНС), и может быть применен для коррекции инерциальной навигационной системы (ИНС) подводного объекта при нахождении в Северном Ледовитом океане (СЛО) подо льдом на горизонте плавания

Изобретение относится к области технических средств спутниковой, инерциальной навигации и гиростабилизации для морских объектов

Изобретение относится к области использования спутниковых навигационных систем (СНС) и может быть применено для скрытной коррекции инерциальной навигационной системы (ИНС) подводного объекта при нахождении его подо льдом

 


Наверх