Патенты автора Шилов Валерий Федорович (RU)

Изобретение относится к приборостроению и может применяться для изготовления конструктивных элементов микромеханических приборов на кремниевых монокристаллических подложках, а именно упругих подвесов и всего чувствительного элемента в целом, например для микромеханических акселерометров и гироскопов. Изобретение обеспечивает снижение трудоемкости изготовления и повышение качества структур. Способ микропрофилирования кремниевых структур включает нанесение защитной пленки на пластину из монокристаллического кремния, формирование из защитной пленки локальной маски в области формирования микропрофиля, анизотропное травление пластины монокристаллического кремния, нанесение защитной пленки, нанесение слоя поликристаллического кремния, анизотропное травление поликристаллического кремния, окисление поликристаллического кремния, травление диоксида кремния со вновь наносимой защитной пленки, травление защитной пленки до поверхности пластины и анизотропное травление в образовавшемся окне пластины монокристаллического кремния. Повторяют поочередно эти процессы необходимое количество раз до получения требуемого микропрофиля с последующим сглаживанием в изотропном или анизотропном травителе или анизотропном и изотропном травителях полученной поверхности. 2 ил.
Изобретение может быть использовано при изготовлении гибких микропечатных плат, применяемых при изготовлении вторичных преобразователей микромеханических акселерометров, микрогироскопов, интегральных датчиков давления. Технический результат - получение высокоплотного монтажа при ширине электропроводящих дорожек менее 50 мкм, сокращение технологического цикла. Достигается тем, что в способе изготовления гибкой микропечатной платы предварительно окисляют пластину монокристаллического кремния толщиной 20-100 мкм, диаметром 200-300 мм, <100> ориентации. Затем наносят покрытия. Проводят фотолитографию. Покрывают полученную электронную схему слоем полимера. Проводят растворение пленки двуокиси кремния с последующим отслоением кремниевой пластины. При этом образуется гибкая микропечатная плата на полимерной пленке.

Изобретение относится к изготовлению конструктивных элементов микромеханических приборов на кремниевых монокристаллических подложках. Изобретение обеспечивает снижение трудоемкости изготовления и повышение качества структур. Способ изготовления глубокопрофилированных кремниевых структур включает нанесение защитной пленки на плоскую пластину из монокристаллического кремния с ориентацией поверхности в плоскости (100), нанесение на нее с двух сторон защитного слоя фоторезиста, проведение одно-двухсторонней фотолитографии, вскрытие окон в защитной пленке, повторное нанесение защитной пленки, проведение одно-двухсторонней фотолитографии, вскрытие окон меньшего размера до поверхности пластины, проведение анизотропного травления в образовавшемся окне, стравливание защитной пленки и проведение анизотропного травления. Представлены альтернативные способы изготовления глубокопрофилированных структур. 5 ил.

Изобретение относится к офтальмологии и может быть использовано для проведения микрохирургических операций. Лезвие офтальмохирургическое содержит корпус с основанием из монокристаллического кремния и режущую кромку. Основание корпуса и режущая кромка порыты слоями нитрида кремния толщиной 100-1000 Å и нитрида титана 500-700 Å. Техническим результатом изобретения является повышение прочности, твердости, износостойкости. 1 ил.

Изобретение относится к области приборостроения и может быть использовано при изготовлении чувствительных элементов, применяемых при изготовлении микромеханических акселерометров, микрогироскопов, интегральных датчиков давления. Задачей, на решение которой направлено изобретение, является упрощение и уменьшение технологического цикла сборки чувствительного элемента микромеханического датчика. В способе сборки чувствительного элемента микромеханического датчика совмещают стеклянную обкладку и кристалл из монокристаллического кремния, устанавливают и зажимают в специальном приспособлении, разогревают, выдерживают при заданной температуре и подают необходимое напряжение. При этом совмещают одновременно две стеклянные обкладки и кристалл из монокристаллического кремния, находящийся между ними, разогревают их до температуры 410°C, выдерживают 1,5 часа, подают напряжение на обе обкладки не меньше, чем на две минуты, отключают напряжение, меняют полярность напряжения, снова подают напряжение и повторяют цикл изменения полярности не менее трех раз. 1 ил.
Изобретение относится к области приборостроения и радиоэлектроники и может быть использовано при изготовлении гибких микропечатных плат, применяемых при изготовлении вторичных преобразователей микромеханических акселерометров, микрогироскопов, интегральных датчиков давления и других изделий. Технический результат - получение высокоплотного монтажа при ширине электропроводящих дорожек менее 50 мкм, сокращение технологического цикла - достигается тем, что в способе изготовления гибкой микропечатной платы предварительно окисляют пластину монокристаллического кремния толщиной 20-100 мкм, диаметром 200-300 мм, <100> ориентации, предварительно окисленную до толщины окисла 1-2 мкм, с последующим снятием окисла с одной стороны, а после нанесения покрытий и проведения фотолитографии проводят вытравление кремниевой пластины с двуокисью кремния и последующим отделением полимерной пленки с электропроводящей схемой и металлорезестивным покрытием.

Изобретение может применяться в микромеханических датчиках линейных ускорений. Сущность изобретения заключается в том, что микромеханический акселерометр содержит чувствительный элемент, выполненный из монокристаллического кремния низкой проводимости, внешнюю рамку с закрепленным на ней маятником при помощи упругих торсионов. Внешняя рамка имеет переменную ширину. В узкой ее части сформированы П-образные петли, обращенные наружу. Площадки крепления к стеклянным обкладкам на внешней рамке расположены строго на продольной и поперечных осях чувствительного элемента. В микромеханическом акселерометре используются круглые стеклянные обкладки. Это упрощает сборку и снижает трудоемкость изделия. Технический результат: увеличение точности с одновременным снижением трудоемкости без изменения массогабаритных параметров. 2 ил.

Изобретение относится к измерительной технике и может применяться в микромеханических компенсационных акселерометрах. Чувствительный элемент содержит инерционную массу, упругие элементы, катушку обратной связи, проводящие дорожки для электрической связи катушек обратной связи со схемой управления, стеклянные обкладки, внешнюю рамку, с расположенными на ней площадками крепления к стеклянным обкладкам. Упругие элементы расположены по оси симметрии инерционной массы. Один конец которых закреплен с внешней рамкой, другой - с инерционной массой. На одной стороне инерционной массы закреплена катушка обратной связи, другая сторона инерционной массы является пластиной емкостного датчика угла. Магнитопровод с постоянными магнитами и катушками обратной связи образуют магнитную систему акселерометра. Соединение катушек обратной связи со схемой управления осуществляется проводящими дорожками, раположенными над упругими элементами, вдоль оси симметрии инерционной массы и оси крутильных колебаний упругих элементов. Изобретение позволяет повысить точность измерений. 3 ил.

Изобретение относится к измерительной технике и может быть использовано в микромеханических датчиках линейных ускорений

Изобретение относится к измерительной технике и может применяться в интегральных гироскопах осциляторного типа

Изобретение относится к измерительной технике и может быть использовано при создании микромеханических акселерометров и гироскопов

Изобретение относится к измерительной технике и может быть использовано при изготовлении интегральных акселерометров

Изобретение относится к измерительной технике и может быть использовано в микромеханических гироскопах для систем управления подвижных объектов различного назначения

Изобретение относится к области технологических процессов изготовления микросистемной техники

Изобретение относится к измерительной технике

Изобретение относится к гравиинерциальным микромеханическим приборам и может быть использовано в системах управления подвижных объектов различного назначения, а также в качестве индикаторов движения объектов

Изобретение относится к гироскопическим приборам и может быть использовано в системах управления подвижных объектов различного назначения, в частности высокодинамичных быстровращающихся объектов, а также может использоваться в качестве индикаторов углового движения

 


Наверх