Патенты автора Исмагилов Зинфер Ришатович (RU)

Изобретение относится к способу получения углеродматричного наноструктурированного композита, в котором в качестве углеродной матрицы используют многостенные углеродные нанотрубки с удельной поверхностью 200 м2/г, внешним диаметром трубок 15-20 нм и внутренним диаметром каналов 3-6 нм. Способ включает нанесение на поверхность углеродной матрицы растворов прекурсоров HAuCl4 или KMnO4 капельной пропиткой по влагоемкости или из разбавленных растворов однократной или многократной пропиткой, с последующим восстановлением растворов прекурсоров непосредственно углеродной матрицей при температуре 25-80°С, последующим выделением готового углеродматричного наноструктурированного композита с содержанием 1-10 масс. % Au или MnOx. Способ характеризуется тем, что концентрация растворов прекурсоров при пропитке по влагоемкости составляет 0,02-0,2 моль/л, а при пропитке из разбавленных растворов 10-4-10-3 моль/л. Технический результат - упрощение технологического процесса изготовления наноструктурированного композиционного материала, повышение дисперсности и однородности распределения по поверхности МУНТ наночастиц наполнителя, увеличение удельной электрической емкости электродного материала. 1 з.п. ф-лы, 10 ил., 1 табл., 21 пр.

Изобретение может быть использовано в автономной энергетике, в энергоустановках с электрохимическими генераторами, в химической промышленности. Способы получения водорода включают взаимодействие частиц алюминия сферической формы с водой. При этом готовят алюмоводную суспензию с массовой долей частиц алюминия 0,01-10% и проводят ультразвуковую обработку суспензии. На частицы алюминия, находящиеся в алюмоводной суспензии, воздействуют сфокусированным импульсным лазерным излучением с длиной волны 450-1064 нм, длительностью импульса 0,005-0,999 мкс, плотностью энергии 0,5-50 Дж/см2, частотой следования импульсов 1-100 Гц с образованием газообразного водорода. В другом варианте воздействуют сфокусированным импульсным лазерным излучением с длиной волны 450-1064 нм, длительностью импульса 1-150 мкс, плотностью энергии 0,5-50 Дж/см2, частотой следования импульсов 1-100 Гц. В третьем варианте на частицы алюминия воздействуют сфокусированным непрерывным лазерным излучением с длиной волны 350-1064 нм, мощностью 10-1000 Вт. Изобретения позволяют упростить процесс получения водорода и используемое оборудование, увеличить скорость получения водорода. 3 н.п. ф-лы, 5 ил., 4 пр.
Изобретение относится к аналитической химии, в частности к химии органических соединений, и может быть использовано для выделения и аналитического определения никотиновой кислоты в процессах получения ее комплексов с катионами железа, никеля или меди, которые могут применяться в качестве биологически активных добавок. Изобретение относится к способу выделения никотиновой кислоты из водного раствора, содержащего катионы железа, никеля или меди, включающему фильтрацию водного раствора смеси никотиновой кислоты с солью металла через слой сорбента, последующую десорбцию кислоты и анализ элюата спектрофотометрическим методом, где в качестве сорбента применяется сульфированный сополимер стирола с дивинилбензолом сульфокатионит КУ-2-8, в качестве элюента применяется дистиллированная вода и достигается высокая степень выделения никотиновой кислоты из многокомпонентного водного раствора, содержащего катионы железа, никеля или меди. Технический результат заключается в создании способа выделения никотиновой кислоты из многокомпонентного водного раствора, содержащего, помимо никотиновой кислоты, катионы железа, никеля или меди, позволяющего достигать степени выделения 98-99% от ее содержания в исходном растворе. 3 пр.

Изобретение относится к переработке твердых горючих ископаемых (ТГИ), таких как бурый уголь, и может быть использовано для получения горного воска и дебитуминированного ТГИ. Изобретение касается способа получения буроугольного воска из бурого угля путем обработки твердого горючего ископаемого органическим растворителем при температуре кипения реакционной смеси, во время процесса обработки органической массы бурого угля, осуществляемой в присутствии смеси органического растворителя, алкилирующего спирта - С4-С5 и водорастворимой минеральной кислоты как катализатора процесса, производится ультразвуковое воздействие на реакционную смесь. Технический результат: способ позволяет существенно снизить продолжительность химического процесса и увеличить деполимеризацию органической массы ТГИ, которая отражается в увеличении выхода целевого продукта - горного воска. 6 табл., 3 пр., 1 ил.
Изобретение относится к области химии, а именно, к приготовлению медьсодержащих цеолитов. Изобретение касается способа приготовления медьсодержащих цеолитов с атомным соотношением Cu/Al в интервале 0.3-0.75 и высокоактивными состояниями катионов Cu(II), а именно: ассоциатами изолированных ионов Cu(II) и структурами ионов Cu(II) с внекаркасным кислородом, который заключается в ионном обмене H-, NH4- или Na-форм цеолита с водно-аммиачными растворами аммиачных комплексов Cu(II) при температуре 20–35°С и рН в интервале 8-12. Для приготовления водно-аммиачного раствора аммиачных комплексов Cu(II) используют нерастворимые или малорастворимые в воде основные соли меди (II), такие как: основной карбонат, основной нитрат, основной сульфат, основной хлорид, растворяя их при температуре 20-50°С в водном растворе гидроксида аммония при мольном соотношении NH4OH/Cu в интервале 5-15, при этом концентрация аммиачного комплекса Cu (II) в растворе находится в интервале 0.005 до 0.2 моль/л, преимущественно 0.02 – 0.125 моль/л, а в качестве цеолита используют цеолиты, силикатный модуль которых находится в пределах 2-50, например ZSM-5, CHA, SSZ-13, SAPO-34, MOR, USY, Y, BEA. Также изобретение касается применения медьсодержащих цеолитов в качестве катализаторов. Технический результат заключается в повышении эффективности и селективности катализаторов на основе медьсодержащих цеолитов в процессах селективного каталитического восстановления оксидов азота и окисления углеводородов, монооксида углерода и сажи, в широком интервале температур, а также в повышении устойчивости катализаторов к дезактивации парами воды. 3 н. и 2 з.п. ф-лы, 2 табл., 24 пр.

Изобретение относится к области переработки органосодержащего сырья с целью получения активных углей, в частности к лабораторной установке для получения эффективных углеродных сорбентов и полезных продуктов термолиза. Установка содержит блок подготовки и дозирования газа, реакторный блок, включающий трубчатую электропечь с цилиндрическим кварцевым реактором, снабженным двумя штуцерами для ввода инертного газа и выхода парогазовых продуктов, блок управления нагревания реактора и регулировки температуры и блок очистки отходящих газов, включающий две последовательно соединенные ловушки для одновременного улавливания жидких и газовых продуктов, образующихся в процессе термического разложения угля. Изобретение обеспечивает получение эффективных углеродных сорбентов с высокими текстурными характеристиками и экологически безопасный процесс их получения. 2 з.п. ф-лы, 2 ил., 1 табл., 8 пр.

Изобретение может быть использовано в водоочистке. Детоксикацию 1,1-диметилгидразина и продуктов его трансформации в водных средах осуществляют обработкой углеродными сорбентами на основе естественно окисленных углей вскрышных пластов угледобывающих предприятий Кузбасса. Указанный сорбент получают методом щелочной активации при температуре 750-800°С и соотношении уголь : щелочь 1:1. Предложенное изобретение обеспечивает сокращение времени обезвреживания и увеличение степени извлечения 1,1-диметилгидразина из водных сред. 1 табл.

Изобретение относится к области молекулярной биологии, биоорганической химии и медицины. Предложен способ получения системы доставки фрагментов нуклеиновых кислот (ФНК) в клетки млекопитающих. Осуществляют синтез основы для доставки ФНК. В качестве основы используют аминозамещенный силанол (Si~NH2) в концентрации 1-4 мг Si/мл. Si~NH2 получают гидролизом в воде аминопропилтриэтоксисилана при рН 10-11 и температуре 20-70°С с последующей нейтрализацией силанола 0,5-1%-ным раствором уксусной кислоты до рН 8-9. К полученному раствору Si~NH2 добавляют рассчитанное количество 10-3-10-7 М раствора соответствующего ФНК в соотношении 5-100 нмоль ФНК на 1 мг Si и инкубируют в 0,1-0,2 М растворе NaCl при комнатной температуре в течение 20-30 мин. Получают систему доставки ФНК в клетки, представляющую собой композит Si~NH2⋅ФHK с емкостью по ФНК 10-100 нмоль/мг Si, обладающий высокой прочностью связывания олигонуклеотида с основой, способностью проникать через клеточную мембрану и низкой цитотоксичностью. 3 ил., 10 пр.

Изобретение относится к очистке сероводородсодержащих углеводородных газов и может быть использовано в химической промышленности. Установка для процесса очистки сероводородсодержащих углеводородных газов от сероводорода с получением элементарной серы содержит реактор 1 прямого окисления сероводорода с катализатором, конденсатор серы 2, последовательный барботер 3, заполненный жидкой серой, промывную противоточную колонну 4. Изобретение позволяет обеспечить высокую степень непрерывной очистки сероводородсодержащих углеводородных газов от сероводорода. 1 ил., 2 табл., 6 пр.

Изобретение относится к технологии приготовления наноструктурированных композитов на основе высокопористых углеродных матриц, наполненных наночастицами золота. Способ получения золото-углеродного наноструктурированного композита включает подготовку высокопористой углеродной матрицы путем обработки углеродного материала раствором щелочи, восстановление в порах полученной матрицы наноразмерных частиц золота путем пропитки навески матрицы водным раствором прекурсора HAuCl4 с последующими нагревом, промывкой и сушкой. При подготовке углеродной матрицы обработку углеродного материала проводят насыщенным раствором щелочи в массовом соотношении щелочь:углеродный материал, равном (2,5÷4):1, пропитку полученной высокопористой углеродной матрицы проводят раствором прекурсора HAuCl4 с концентрацией 4,1⋅10-3÷1,07⋅10-1 моль/л. Изобретение позволяет создать золото-углеродный наноструктурированный композит с высокой удельной поверхностью и малым содержанием золота. 3 ил., 3 табл.

Изобретение относится к коксохимической промышленности, в частности к способу получения связующего пека, который может быть использован в качестве замены каменноугольного пека для производства анодной массы, угольной и графитированной продукции, конструкционных углеграфитовых материалов. Способ включает окисление каменноугольной смолы кислородом воздуха до получения связующего пека. В качестве каменноугольной смолы используют тяжелую смолу полукоксования с плотностью от 1,00 г/см3 до 1,1 г/см3, полученную при температуре пиролиза угля 500-600°С, при этом окисление кислородом воздуха проводят при 200-400°С в течение 10-30 минут при подаче воздуха из расчета 20-60 л/кг каменноугольной смолы при атмосферном давлении. Получаемый связующий пек имеет температуру размягчения, близкую к таковой для традиционного каменноугольного пека, при этом содержание бенз(а)пирена снижено в 20 раз. 1 з.п. ф-лы, 1 табл., 5 пр.
Изобретение может быть использовано при изготовлении сорбентов, носителей катализаторов, материалов для электрических конденсаторов. Для получения мезопористого углеродного материала с высокой удельной поверхностью в качестве прекурсоров используют смеси индивидуальных органических соединений, одним из компонентов которых является фурфурол, а вторым - фенол или гидрохинон. Прекурсоры смешивают с гидроксидом натрия или калия. Полученную смесь подвергают плавлению и последующей карбонизации при 700-900°C в среде отходящих газов. Карбонизат отмывают от солей, сушат и активируют углекислым газом при 800-900°C. Технический результат - получение мезопористых углеродных материалов с удельной поверхностью более 2500 м2/г и емкостью 2,5-4,5 см3/г. 1 з.п. ф-лы, 2 ил., 8 пр.
Изобретение относится к области разработки катализаторов для различных процессов гидрирования ароматических нитросоединений в соответствующие амины. Заявлен способ синтеза палладий-углеродного катализатора для получения ароматических аминов путем восстановления водородом ароматических нитросоединений в растворителе. Катализатор получают модифицированием трифенилфосфином палладия с последующим его нанесением на мезопористый углеродный носитель - Кемерит. Затем проводят многократное восстановление при одной загрузке катализатора. Технический результат - повышение скорости процесса и выхода продукта с одновременным повышением стабильности катализатора, при которой многократно возрастает возможность его повторного использования. 3 з. п. ф-лы, 4 пр.

Изобретение относится к электродной и химической промышленности и может быть использовано при изготовлении электродов, магнитных сенсоров, катализаторов. Композитный материал системы углерод-никель получают путем нанесения металлического активного компонента в виде раствора азида никеля на пористую углеродную основу, пропитки её пор на весь объём с последующим восстановлением гидразингидратом до металлического наноразмерного никеля в сильнощелочной среде при рН ≥12 и температуре 90-100°С. В качестве углеродной основы используют пористую угольную матрицу объемом микро- и мезопор 0,31 см3/г и 0,43 см3/г соответственно и удельной поверхностью 1113 м2/г. Размер частиц никеля в микропорах 2 нм, в мезопорах 3-15 нм, а на поверхности матрицы и в межпоровом объеме 80-150 нм. Изобретение позволяет упростить технологию получения высокочистого композитного материала. 1 з.п. ф-лы, 2 табл., 5 ил., 2 пр.

Изобретение относится к нефтехимической и газовой промышленности и может быть использовано при освоении скважин на месторождениях природных углеводородных газов. Сероводород и меркаптаны окисляют (Р-1) в присутствии катализатора с получением элементарной серы и диоксида серы. Полученный газ охлаждают для конденсации элементарной серы и подают в последовательно расположенный слой адсорбента (А-1), (А-2). Температуру адсорбента на входе поддерживают равной 130-150°С, а на выходе равной 100-120°С. Изобретение позволяет обеспечить непрерывную очистку от сероводорода газовых потоков с переменным расходом и составом. 4 з.п. ф-лы, 8 пр., 8 табл., 2 ил.

Изобретение относится к области биохимии, молекулярной биологии и медицины. Предложен способ получения наноразмерной системы доставки фрагментов нуклеиновых кислот (ФНК) и их аналогов в клетки млекопитающих. Получают суспензию наночастиц TiO2 с концентрацией 1-2 мг/мл в 0,1-0,5 M растворе NaCl. При этом частицы TiO2 имеют размер 3-20 нм, преимущественно 3-5 нм, и находятся в аморфной или в кристаллической форме анатаз или брукит. Полученную суспензию TiO2 смешивают с водным раствором полилизина с концентрацией 20 мг/мл в соотношении TiO2:полилизин равном 1:(0,05-0,8). Смесь инкубируют при комнатной температуре в течение не менее 30 мин. Далее к полученной суспензии полилизинсодержащих наночастиц добавляют 5-70 мкл раствора ФНК с концентрацией 10-4-10-7 М и инкубируют в 0,1-0,5 М растворе NaCl при комнатной температуре в течение 20-30 мин. Получают нанокомпозит TiO2-PL·ФНК с емкостью по ФНК 0,2-60 нмоль/мг. Изобретение позволяет упростить способ получения системы доставки ФНК и сократить его длительность. 3 з.п. ф-лы, 3 ил., 14 пр.

Изобретение относится к области молекулярной биологии, биоорганической химии и медицины. Заявляемые нанокомпозиты предназначены для направленного воздействия на генетический материал внутри клетки и подавления его дальнейшего функционирования. Нанокомпозиты, состоящие из наночастиц диоксида титана в аморфной или кристаллической (анатаз, брукит) форме, иммобилизованных полилизиновых производных олигонуклеотидов (PL-oligo) и фотоактивируемых арилазидных групп, введенных по аминогруппам полилизина. Все компоненты нанокомпозита выполняют определенную функцию: ТiO2-наночастицы способствуют трансфекции клеток; полилизин способствует иммобилизации олигонуклеотида на поверхность наночастиц и вносит функциональные группы (NH2), позволяющие вводить дополнительные реакционноснособные группы; олигонуклеотиды определенной последовательности направляют композит к целевым участкам вирусной РНК; фогоактивируемая перфторарилазидная группа после облучения светом способна разрушать нуклеиновые кислоты. 3 н. и 6 з.п. ф-лы, 3 ил., 15 пр.

Изобретение относится к способу низкотемпературной графитации углеродного материала
Изобретение относится к переработке твердых горючих ископаемых (ТГИ), таких как бурый уголь, торф и т.п., и может быть использовано для получения обессмоленных модифицированных восков

Изобретение относится к области биотехнологии, молекулярной биологии, медицины и ветеринарии

Изобретение относится к способу получения наноразмерной доставки антибиотиков ряда блеомицина в клетки млекопитающих

Изобретение относится к технологии углеграфитовых материалов и может быть использовано при изготовлении гибкой фольги, анодных масс алюминиевых электролизеров, уплотняющих прокладок, в качестве сорбентов для очистки воды, сбора нефтепродуктов

Изобретение относится к катализаторам для восстановления диоксида серы из серосодержащих газов

Изобретение относится к области молекулярной биологии, биоорганической химии и медицины

Изобретение относится к нефтехимической и химической промышленности, в частности к способу приготовления сформованных катализаторов конверсии метана в ароматические углеводороды и водород в неокислительных условиях

Изобретение относится к способам получения углеграфитовых материалов и может быть использовано при изготовлении гибкой фольги, анодных масс алюминиевых электролизеров, уплотняющих прокладок, в качестве сорбентов для очистки воды, сбора нефтепродуктов

Изобретение относится к области охраны окружающей среды, а именно к очистке отходящих газов предприятий цветной металлургии от диоксида серы с получением элементарной серы

Изобретение относится к каталитическим технологиям, а именно к каталитическому сжиганию природного газа, и может быть использовано в каталитических камерах сгорания газотурбинных силовых установок

Изобретение относится к технологии получения анодного материала (анодов)

Изобретение относится к области охраны окружающей среды, а именно к очистке отходящих газов предприятий цветной металлургии от диоксида серы с получением элементарной серы

Изобретение относится к области охраны окружающей среды, а именно к очистке отходящих газов предприятий цветной металлургии от диоксида серы с получением элементарной серы

Изобретение относится к области химии, а именно к катализаторам, способу приготовления катализатора и способу получения синтез-газа в процессах парциального окисления метана, парового риформинга метана и углекислотного риформинга метана
Изобретение относится к области химии, а именно к катализаторам, предназначенным для глубокой гидроочистки дизельных фракций от сернистых соединений, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности
Изобретение относится к способу глубокого каталитического окисления метанола низких концентраций и может быть использовано в целях защиты окружающей среды в различных отраслях народного хозяйства
Изобретение относится к химии гетероциклических соединений серы, а именно к способам получения тиофена из продуктов нефтепереработки, и может найти применение в химической промышленности
Изобретение относится к области химии, а именно к катализаторам, предназначенным для глубокой гидроочистки углеводородного сырья, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности
Изобретение относится к области химии, а именно к катализаторам, предназначенным для глубокой гидроочистки углеводородного сырья, в частности дизельных фракций, от сернистых соединений? и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности

Изобретение относится к катализаторам, предназначенным для глубокой гидроочистки углеводородного сырья, в частности дизельных фракций, от сернистых соединений, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности
Изобретение относится к получению азотсодержащего пористого углеродного материала
Изобретение относится к области химии, а именно к приготовлению катализаторов гидрообессеривания и деароматизации, используемых для процессов глубокой очистки моторных топлив от серосодержащих соединений и ароматических соединений

 


Наверх