Патенты автора Махутов Николай Андреевич (RU)

Использование: для мониторинга несущей прочности изделий с применением акустико-эмиссионной диагностики. Сущность изобретения заключается в том, что осуществляют кластерную селекцию регистрируемых локационных импульсов в поле дескрипторов относительной энергии (Eи) и усредненной частоты выбросов (Nи/tи, где Nи - количество выбросов, tи - длительность импульса) на кластеры нижнего (Н), среднего (С) и верхнего (В) энергетического уровня, и вычисление весового содержания локационных импульсов (WH, WC, WB) в указанных кластерах (Wi = (Ni/N∑)⋅100%, где N∑ - суммарное количество локационных импульсов, Ni=H,C,B - их количество в i-том кластере), при этом дополнительно подсчитывают текущий уровень несущей способности изделий по соответствующим формулам, которые включают такие параметры, как WH и WC - ежесекундно регистрируемое весовое содержание локационных импульсов в нижнем и среднем энергетических кластерах, [WH] и [WC] - их пороговые значения при разрушении конструкционного материала, (WH)max ≥ 80%, (WC)min ≤ 20%, (WB)min < 1% - экстремальные значения параметров, регистрируемые при переходе от рассеянного к локальному накоплению повреждений. Технический результат: повышение достоверности и точности оценки текущего уровня несущей способности изделий с помощью АЭ диагностики. 3 ил.

Использование: для моделирования неустойчивых переходных процессов накопления повреждений в диагностируемом объекте с регистрацией точек структурной и системной бифуркации. Сущность изобретения заключается в том, что для регистрации динамики переходных процессов при формировании насыпного конуса и изменения их тренда в точках структурной и системной бифуркации, вследствие накопления критической массы гранулята на вершине конуса, его оседания под действием собственного веса и последующего лавинообразного обрушения, предлагается с применением конической поверхности искусственно создавать условия обрушения гранулята при малой толщине формируемого слоя δ=10-20 мм, а временное стробирование переходных процессов осуществлять посредством синхронной записи видеоизображений и массивов локационных импульсов, регистрируемых с применением акустико-эмиссионного мониторинга, ежесекундно разделяя сигналы АЭ на кластеры нижнего, среднего и верхнего энергетического уровня, подсчитывая частоту их регистрации ωi=H,C,B и процентное содержание Wi=H,C,B, фиксируя на графиках динамику этих параметров и изменение тренда переходных процессов в точках структурной и системной бифуркации, подтверждая моменты их регистрации кадрами высокоскоростной видеосъемки. Технический результат: обеспечение возможности моделирования динамики изменения тренда накоплений повреждений в точках структурной и системной бифуркации, возникающих в диагностируемом объекте. 2 н. и 6 з.п. ф-лы, 8 ил.
Изобретение относится к технике для исследования деформаций и напряжений в конструкциях опасных производственных объектов газо- и нефтехимической промышленности. Сущность: наносят на поверхность детали хрупкое тензочувствительное пористое покрытие с фреоном, осуществляют отверждение покрытия, нагружение конструкции и определяют зону высвобождения газа фреона из пористого покрытия (лопаются пузырьки) и направление пластических напряжений при деформации, используя датчики акустической эмиссии. В качестве хрупкого тензочувствительного покрытия используют покрытие, выполненное из смеси, содержащей эпоксидную смолу, отвердитель ПЭП, газ фреон R-22 при следующем соотношении компонентов, мас.%: эпоксидная смола 65-84, отвердитель ПЭП 14-33, газ фреон R-22 2-10. Технический результат: обеспечение возможности определения напряжений и деформаций с помощью хрупких покрытий на очень ранней стадии, исключая вредное влияние на окружающую среду.
Использование: для исследования деформаций и напряжений в конструкциях опасных производственных объектов газо-, нефтехимической промышленности. Сущность: заключается в том, что наносят на поверхность детали хрупкое тензочувствительное пористое покрытие с фреоном, осуществляют отверждение покрытия, нагружение конструкции и определяют зону высвобождения газа фреона из пористого покрытия (лопаются пузырьки), используя газоанализатор, при этом в качестве хрупкого тензочувствительного пористого покрытия используют покрытие, выполненное из смеси, содержащей эпоксидную смолу, отвердитель ПЭП, газ фреон R-22 при следующем соотношении компонентов, мас. %: эпоксидная смола 65-84, отвердитель ПЭП 14-33, газ фреон R-22 2-10. Техническим результатом является обеспечение возможности определения напряжений и деформаций на основе высвобожденного газа при малых и экстремальных деформациях..

Изобретение относится к определению напряженно-деформированного состояния металлических конструкций высокорисковых объектов нефтяной, газовой и химической отраслей промышленности, систем транспорта и переработки нефти и газа с помощью тензочувствительных хрупких покрытий, что позволяет получить наглядную картину наибольшей концентрации напряжений, получить данные для оценки и прочности потенциально опасных объектов. Хрупкое покрытие для исследования деформаций и напряжений выполнено из смеси эпоксидной смолы ЭД-20, отвердителя полиэтиленполиамина (ПЭПА) и фреона-26 при следующем соотношении компонентов, мас. %: смола 20-60, отвердитель 1-3, фреон 79-37. Техническим результатом изобретения является обеспечение возможности ранней диагностики и увеличение чувствительности метода. 1 табл.

Использование: для контроля процесса трещинообразования хрупких тензоиндикаторов при изменении уровня нагруженности в исследуемых зонах конструкции. Сущность изобретения заключается в том, что выполняют акустико-эмиссионные измерения сигналов образования трещин в хрупком тензопокрытии с дополнительным измерением концентрации аэрозолей в приповерхностном слое хрупкого тензопокрытия. Концентрацию микрочастиц от толщины оксидной пленки определяют по формуле: , где δ10 - минимальная толщина оксидной пленки, условно принятая равной 10 мкм; Kδ - коэффициент, зависящий от толщины оксидной пленки тензоиндикатора и определяемый экспериментально. Технический результат: обеспечение возможности регистрации процесса структурной перестройки материала задолго до начала разрушения конструкции. 1 з.п. ф-лы, 5 ил.

Использование: для исследования деформации и напряжений в хрупких тензоиндикаторах. Сущность: что проводят акустико-эмиссионнные измерения сигналов образования трещин в хрупком тензопокрытии, при этом дополнительно измеряют концентрацию аэрозолей в приповерхностном слое хрупкого тензопокрытия, при этом при скорости изменения нагрузки до 0,1 кН/с с учетом 30-секундной поправки на задержку регистрации диагностируют процесс разрушения оксидной пленки тензоиндикатора и материала подложки. Технический результат: обеспечение возможности диагностики предельного состояния и раннего предупреждения об опасности разрушения конструкций в процессе их технической эксплуатации, а также оценки прочности, выявления дефектов и зон действия максимальных напряжений в условиях стендовых и натурных испытаний образцов и деталей. 4 ил.

Изобретение относится к области испытаний материалов с памятью формы при циклических, тепловых и механических воздействиях

Изобретение относится к диагностированию нефтегазового оборудования, длительно эксплуатируемого в сероводородсодержащих средах, вызывающих коррозионное растрескивание металла, и может быть использовано для оценки несущей способности и остаточного ресурса нефтегазового оборудования при диагностировании с целью продления сроков их эксплуатации с учетом фактических характеристик циклической трещиностойкости металла

Изобретение относится к устройствам для формирования нанопокрытий на полых деталях с последующим исследованием их механических свойств и может быть использовано в машиностроении для создания защитных, упрочняющих и износостойких покрытий

Изобретение относится к устройствам технической диагностики и неразрушающего контроля материалов и изделий и предназначено для диагностики их предельного состояния и раннего предупреждения об опасности разрушения

Изобретение относится к химико-термической обработке металлических изделий, а именно к созданию наноструктурированных материалов конструкционного назначения

Изобретение относится к химико-термической обработке металлических изделий, а также к созданию наноструктурированных материалов конструкционного назначения
Изобретение относится к исследованию деформаций и напряжений и может быть использовано для исследования деформаций и напряжений в деталях, например в элементах металлических конструкций инженерных сооружений

Изобретение относится к технике для защиты объектов техники от воздействия ударных волн в воздушной среде, в частности к устройствам для локализации взрывов
Изобретение относится к тензочувствительному хрупкому покрытию для определения деформаций и напряжений в элементах нефтегазохимических аппаратов и трубопроводов
Изобретение относится к способам защиты различного оборудования, в частности нефтезаводского и нефтехимического, от разрушительного воздействия ударной волны при внезапных возможных аварийных ситуациях

Изобретение относится к устройствам для нанесения покрытий на внутреннюю поверхность трубы и может быть использовано при ремонте, изоляции магистральных и технологических трубопроводов в химической, нефтяной и газовой промышленности

Изобретение относится к области исследования физических свойств материалов и обеспечения контроля за состоянием технических объектов, находящихся под действием механических и/или термомеханических нагрузок в среде, характеризуемой определенной температурой и химическим составом

Изобретение относится к области неразрушающего контроля и может быть использовано при изготовлении, монтаже и эксплуатации изделий современного машино- и приборостроения

 


Наверх