Патенты автора Швейкин Геннадий Петрович (RU)

Изобретение относится к порошковой металлургии и может быть использовано при изготовлении упрочняющих и легирующих добавок для алюминиевых сплавов, углеродсодержащих огнеупорных, керамических и абразивных материалов. Сначала готовят исходную смесь гидроксида алюминия и сажи путём осаждения азотнокислого водного раствора алюминия водным раствором аммония при рН, равном 6,0-7,5, и температуре 60-85 °С, при массовом соотношении алюминия в пересчете на оксид и сажи, равном 1-(1,0-4,5), соответственно. Затем полученный горячий осадок фильтруют, промывают водой и сушат при 100-110 °С. Высушенный осадок обжигают на первой стадии микроволновым излучением с частотой 2450-3000 МГц и мощностью 700 Вт в токе аргона, который подают со скоростью 5-6 л/ч, со скоростью нагрева 20 °С/мин до 500-510 °С, со скоростью нагрева 10 °С/мин до 700-710 °С и со скоростью нагрева 5 °С/мин до 1200-1210 °С с выдержкой при этой температуре в течение 120-130 мин. На второй стадии проводят обжиг при температуре 1600-1800 °С в течение 120-130 мин в вакууме 1,0·10-2-9,0·10-3 Topp. Полученная композиции на основе смеси оксикарбидов алюминия представляет собой ультрадисперсный порошок со средним размером частиц менее 500 нм и не содержит посторонних примесей. 4 ил., 1 табл., 2 пр.

Использование: для диагностики реальной структуры нанотонких кристаллов. Сущность изобретения заключается в том, что способ диагностики эволюции нанотонких пространственных структур включает электронно-микроскопические, микродифракционные исследования, выявление последовательности пространственных структур путем анализа картин изгибных контуров, присутствующих на их электронно-микроскопических изображениях, выполнение расчетов с использованием стандартных кристаллографических формул для определения значений параметров, характеризующих сложность организации их решетки, определение геометрии решетки путем анализа поверхностей искривления решетки, затем определение кооперативных движений структурных единиц, обусловливающих сложность организации решетки, анализируя вращения обратной решетки, и расчетным путем энтропии n-й − Sn и энтропии (n + 1)-й − Sn+1 пространственных диссипативных структур и установление их соотношения. Технический результат: обеспечение возможности надежно и достоверно диагностировать эволюцию нанотонких пространственных диссипативных структур, сформировавшихся в аморфной пленке при ее одностороннем нагреве. 9 ил., 1 табл.

Изобретение относится к получению нанодисперсного порошка карбида хрома. Проводят восстановительную обработку оксидного соединения хрома микроволновым излучением в атмосфере аргона. В водный раствор неорганической соли хрома, выбранной из группы, включающей Cr(NO3)3⋅9H2O, Cr(SO4)⋅6Н2О и CrCl3, вводят сажу в рассчитанном на оксид хрома количестве Cr2O3÷С=1:4,33 и проводят обработку полученного раствора водным раствором неорганической щелочи при рН=7,5-12,0 с получением осадка из наночастиц гидроксида хрома на поверхности частиц сажи, который высушивают и прессуют в виде таблеток. Полученные таблетки обрабатывают микроволновым излучением с частотой 2450-3000 МГц и мощностью 700-900 Вт при скорости подачи аргона 5-6 л/час в три стадии. Обеспечивается получени однофазного нанодисперсного порошка. 4 ил., 1 табл., 3 пр.

Изобретение относится к получению ультрадисперсного порошка металлического кобальта. Способ включает термообработку кислородсодержащего соединения кобальта в газовой среде. Предварительно водный раствор оксалата или нитрата кобальта обрабатывают раствором гидроксида натрия или калия при рН=8-12 в присутствии сажи, взятой в пересчете на оксид в соотношении Co3O4÷C=1÷4 с получением кислородсодержащего соединения кобальта в виде осадка гидроксида кобальта, который промывают, фильтруют и сушат. Термообработку гидроксида кобальта осуществляют микроволновым излучением в токе аргона со скоростью подачи 5-6 л/час на частоте 2450-3000 МГц и мощности 700-1000 Вт при температуре 900°С в течение 15 мин со скоростью нагрева 20°С/мин до 500°С и 10°С/мин до 900°С. Обеспечивается получение ультрадисперсного порошка с высокоразвитой поверхностной активностью. 1 табл., 4 ил., 2 пр.

Использование: для получения диссипативных структур. Сущность изобретения заключается в том, что способ получения диссипативной структуры в аморфной пленке в виде нанотонких кристаллов с упругим ротационным искривлением решетки включает нагревание и последующее охлаждение, где предварительно на подложку из слюды путем вакуумного напыления наносят слой аморфного углерода толщиной не более 25 нм с использованием в качестве источника углерода углеродного стержня, затем - слой аморфного селена толщиной не более 80 нм с использованием в качестве источника селена порошкообразного селена, затем - снова слой аморфного углерода толщиной не более 25 нм, и осуществляют термоградиентную обработку путем нагрева нижней поверхности подложки в интервале температур 373-463 K в течение 30-180 с, а затем осуществляют охлаждение путем закалки на воздухе. Технический результат: обеспечение возможности получения диссипативной структуры в аморфной пленке в виде нанотонких кристаллов с упругим ротационным искривлением решетки, содержащей кристаллы уменьшенного размера, максимальный размер которых не превышает 10 мкм. 3 табл., 7 ил.

Использование: для диагностики римановой кривизны решетки нанотонких кристаллов. Сущность изобретения заключается в том, что способ диагностики римановой кривизны решетки нанотонких кристаллов включает получение электронно-микроскопического изображения нанотонкого кристалла в светлом поле, получение микроэлектронограммы от кристалла, микродифракционное исследование нанотонкого кристалла, анализ ротационного искривления решетки нанотонкого кристалла, при этом на электронно-микроскопическом изображении нанотонкого кристалла выбирают физическую точку M и двумерное направление, для этого выбирают пару - нелинейный изгибной экстинкционный контур и соответствующий ему рефлекс на микроэлектронограмме, испытывающий азимутальное размытие; проводят диагностику римановой геометрии решетки нанотонкого кристалла в данной точке M и данном двумерном направлении, задаваемом бивектором (а, b) - парой неколлинеарных векторов, исходящих из одной точки, совпадающей с центром микроэлектронограммы, полученной от нанотонкого кристалла, расположенных в плоскости микроэлектронограммы, где вектор b соответствует размытому рефлексу, путем совместного анализа пары - нелинейного изгибного экстинкционного контура, присутствующего на электронно-микроскопическом изображении кристалла в темном поле, и соответствующего ему рефлекса на микроэлектронограмме от кристалла, для установления непрерывности азимутального размытия рефлекса и непрерывности соответствующего ему изгибного контура, затем проводят диагностику римановой кривизны решетки нанотонкого кристалла путем определения численного значения римановой кривизны решетки нанотонкого кристалла в данной точке М и данном двумерном направлении, задаваемом бивектором (а, b), по определенной формуле. Технический результат: обеспечение возможности надежного, точного и экспрессного способа диагностики римановой кривизны решетки нанотонкого кристалла. 6 ил., 4 табл.

Изобретение относится к области газотермических покрытий, более конкретно к плазменному напылению на детали, эксплуатируемые в экстремальных условиях. Способ нанесения износостойкого покрытия на стальные детали, включающий ввод дисперсного порошка самофлюсующегося сплава на основе никеля через кольцевую щель в воздушно-плазменную струю с последующей газодинамической фокусировкой и напыление его на предварительно обработанную поверхность стальной детали, отличающийся тем, что используют порошок самофлюсующегося сплава на основе никеля состава Ni-Cr-B-Si-C или Ni-Al, частицы которого плакированы твердорастворным сплавом Ni-Cr с толщиной слоя 2-6 мкм, при этом в качестве фокусирующего газа используют смесь воздуха и природного газа, взятых в соотношении природный газ : воздух =(1,86÷4,88):1, а напыление осуществляют при среднемассовой температуре струи плазмы 5750÷6500 К и ее среднемассовой скорости 2170÷2500 м/с. Способ покрытия позволяет в отсутствие операции оплавления значительно повысить твердость и износостойкость получаемых покрытий. 2 табл.

Изобретение относится к области порошковой металлургии, в частности к способам получения ультрадисперсных порошков карбида ванадия, которые используют при изготовлении твердых сплавов, быстрорежущей стали, ее заменителей, малолегированных инструментальных и некоторых конструкционных сталей и износостойких покрытий. Способ получения ультрадисперсного порошка карбида ванадия включает получение смеси кислородсодержащего соединения ванадия с источником углерода, сушку и прессование полученного порошка с последующей обработкой микроволновым излучением в среде аргона. Исходную смесь получают путем нейтрализации до pH 2,5-2,75 водного раствора ванадата аммония раствором неорганической кислоты в присутствии сажи, взятой в соотношении V2O5:С=1:7 (в пересчете на оксид). В качестве неорганической кислоты используют HNO3, HCl или H2SO4. Последующую обработку прессованных заготовок проводят микроволновым излучением с частотой 2450-3000 МГц при мощности 700-1200 Вт и подачей аргона со скоростью 5-6 л/час в три стадии: со скоростью 15°C/мин до 300-350°C; со скоростью 10°C/мин до 700-750°C и со скоростью 5°C/мин до 1100-1200°C с выдержкой на конечной стадии в течение 15-30 мин. Технический результат изобретения - получение ультрадисперсных порошков карбида ванадия со средним размером частиц 235-250 нм простым и надежным способом. 1 з.п. ф-лы, 3 пр., 5 ил.

Изобретение относится к области нанесения газотермических покрытий, а именно к способам нанесения плазменных покрытий на детали, работающие в экстремальных условиях. Способ нанесения износостойкого покрытия на стальную поверхность включает очистку поверхности, получение дисперсной порошковой смеси самофлюсующегося сплава и диборида титана, введение в плазменную струю смеси и ее напыление с последующим оплавлением поверхности покрытия. Очистку поверхности осуществляют путем полировки, а в качестве самофлюсующегося сплава используют сплав кобальта, предварительно механически легированный порошком алюминия с размером частиц менее 1 мкм, при этом исходные компоненты смеси взяты в следующем соотношении, мас.%: сплав кобальта 34,0-59,5; алюминий 6,0-10,5; диборид титана 30,0-60,0. Повышается микротвердость и износостойкость покрытия, а также качество покрытия за счет снижения пористости основного слоя. 1 табл., 2 пр.

Способ визуализации ротационного искривления решетки нанотонких кристаллов включает получение электронно-микроскопического изображения нанотонкого кристалла в светлом и темном поле, получение электронограммы от кристалла, микродифракционное исследование, анализ картины изгибных экстинкционных контуров, присутствующих на электронно-микроскопическом изображении кристалла, расчет углов поворота решетки кристалла вокруг [001]. Заявленный способ визуализации ротационного искривления решетки нанотонкого кристалла позволяет на основании экспериментальных данных, полученных при исследовании реальной структуры нанотонкого кристалла, построить двумерный геометрический объект - поверхность искривления решетки для выбранного кристаллографического направления. Простота и наглядность заявляемого способа позволяют визуализировать ротационное искривление решетки нанотонкого кристалла и визуализировать изменение геометрии решетки нанотонких кристаллов от евклидовой к римановой. 10 ил., 4 табл.

Изобретение относится к области порошковой металлургии. Способ получения ультрадисперсного порошка сложного карбида вольфрама и титана, включающий смешение вольфрам- и титансодержащих компонентов с источником углерода, прессование полученного порошка и последующую карбидизацию. Осуществляют нейтрализацию до pH 0-2 водного раствора вольфрамата аммония в присутствии сажи, взятой в количестве WO3:С=1:4 (в пересчете на оксид), и нейтрализацию до pH 10-12 водного раствора сульфата титанила в присутствии сажи, взятой в количестве TiO2:С=1:3 (в пересчете на оксид). Полученные осадки смешивают и карбидизируют путем обработки микроволновым излучением с частотой 2450-3000 МГц при мощности 700-1200 Вт в токе аргона со скоростью 5-6 л/ч в три стадии: со скоростью 15°C/мин до 500°C; со скоростью 10°C/мин до 700°C и со скоростью 5°C/мин до 1100°С с выдержкой на конечной стадии в течение 20-30 мин и последующей обработки в вакууме 10-3 мм рт.ст. при температуре 1350-1400°C в течение 50-60 мин. При этом соотношение карбида вольфрама к карбиду титана WC:TiC=90-50:10-50. Изобретение позволяет получить ультрадисперсный порошок сложного карбида вольфрама и титана с размером частиц менее 300 нм. 1 табл., 3 ил.

Изобретение относится к области порошковой металлургии и может быть использовано при изготовлении твердых сплавов, режущего инструмента и износостойких покрытий. Водный раствор сульфата титанила нейтрализуют до pH 10-12 раствором гидроксида аммиака/натрия в присутствии сажи с получением порошка. Порошок прессуют и проводят обработку микроволновым излучением с частотой 2450-3000 МГц при мощности 700-1200 Вт в токе аргона со скоростью 7-8 л/час в три стадии, причем на первой стадии со скоростью 15°C/мин до 500°C, на второй - со скоростью 10°С/мин до 700°C и на третьей - со скоростью 5°С/мин до 1300°C и с выдержкой в течение 60-70 мин. Обеспечивается получение ультрадисперсного порошка карбида титана с размером частиц около 250 нм. 1 з.п. ф-лы, 3 ил., 1 табл., 2 пр.

Использование: для диагностики реальной структуры кристаллов. Сущность изобретения заключается в том, что выполняют электронно-микроскопическое и микродифракционное исследования кристалла, при этом в случае присутствия на электронно-микроскопическом изображении исследуемого нанотонкого кристалла картин изгибных экстинкционных контуров проводят анализ симметрии картин контуров и при выявлении элементов симметрии, отличных от тождественного преобразования, по результатам микродифракционного исследования диагностируют реальную структуру одного из симметрично равных участков нанотонкого кристалла, а затем диагностируют реальную структуру другого как симметрично равную реальной структуре исследованного участка, после чего диагностируют реальную структуру нанотонкого кристалла в целом. Технический результат: обеспечение возможности повышения экспрессности диагностики реальной структуры нанотонких кристаллов. 7 ил., 5 табл.

Изобретение может быть использовано в области порошковой металлургии, в частности в получении ультрадисперсных порошковых материалов на основе карбидов вольфрама, используемых в качестве прекурсоров при производстве твердых сплавов. Способ получения ультрадисперсного порошка смеси карбида вольфрама и металлического кобальта включает получение ультрадисперсного порошка смеси оксидов вольфрама и кобальта путем нейтрализации водного раствора соответствующих неорганических солей в присутствии сажи и последующую карбидизацию, осуществляемую путем восстановления в токе инертного газа со скоростью 4,5-5,0 л/ч при температуре 1150-1250°C. Технический результат - получение ультрадисперсного порошка карбида вольфрама и металлического кобальта с размером частиц ~300 нм. 1 з.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к области порошковой металлургии, в частности к способам получения ультрадисперсных порошковых материалов на основе карбидов вольфрама

Изобретение относится к области порошковой металлургии, в частности к способам получения ультра-нанодисперсных порошков оксидов переходных металлов
Изобретение относится к получению сиалоновых материалов, применяемых в различных областях науки и техники

Изобретение относится к способу изготовления фильтрующих элементов и поворотному приспособлению для его осуществления

Изобретение относится к области порошковой металлургии, в частности к способам получения ультра-нанодисперсных порошков оксидов переходных металлов или смеси оксидов переходных металлов
Изобретение относится к области сорбционной технологии извлечения радионуклидов из водных сред и может быть использовано для очистки сбросных растворов радиохимических производств, природных водных растворов от опасных радиоактивных загрязнителей путем их извлечения в сорбент

Изобретение относится к области получения органических соединений металлов, которые могут быть использованы в качестве прекурсоров в процессе синтеза оксидов соответствующих металлов, в частности к получению нановолокон гликолята титана, являющихся прекурсорами для получения оксида титана, и могут быть применены в различных областях техники в качестве катализаторов, датчиков, пигментов и т.д
Изобретение относится к охране окружающей среды, а именно к области сорбционной технологии, используемой для очистки водных растворов от ионов металлов

 


Наверх