Патенты автора Кусков Михаил Леонидович (RU)

Изобретение относится к области получения карбида железа, в частности к области получения нанопорошков карбида железа газофазными методами, который может быть использован в таких областях, как электрохимия, катализ, биомедицина. Предложен способ получения наночастиц карбида железа со структурой «ядро-оболочка» с регулируемым содержанием металлического железа в ядре наночастицы и карбида железа в ее оболочке, включающий испарение железа из капли расплавленного железа, подвешенной в высокочастотном поле противоточного индуктора в вертикально ориентированном реакторе, захват паров железа от капли непрерывным нисходящим потоком газа-носителя, конденсацию паров железа в наночастицы железа в зоне конденсации, взаимодействие железа с углеродом в газовой фазе в наночастицах железа в зоне реакции ниже по потоку, перенос образовавшихся наночастиц карбида железа потоком газа-носителя в зону охлаждения и улавливание их фильтром, при этом источником углерода служит углеродсодержащий газ, который вводят в поток газа-носителя выше зоны реакции через кольцевой зазор в реакторе, расположенный на расстоянии более 7 мм и менее или равном 30 мм от нижнего витка противоточного индуктора, в качестве газа-носителя используют инертный газ, а потерю массы испаряемой капли расплавленного железа восполняют непрерывной подачей в нее железной проволоки. В качестве углеродсодержащего газа используют ацетилен. Предложенный способ отличается простотой и высокой технологичностью, что позволяет существенно расширить область его использования. 1 з.п. ф-лы, 4 ил., 3 пр.

Изобретение относится к области получения карбида железа, в частности к области получения нанопорошков карбида железа без содержания металлического железа газофазными методами, и может быть использовано в таких областях, как электрохимия, катализ, биомедицина. Предложен способ получения нанопорошка карбида железа без содержания металлического железа в свободно-насыпном состоянии со средним размером частиц менее 50 нм, включающий испарение железа из капли расплавленного железа, подвешенной в высокочастотном поле противоточного индуктора в вертикально ориентированном реакторе, захват паров железа от капли непрерывным нисходящим потоком инертного газа-носителя, конденсацию паров железа в наночастицы железа в зоне конденсации, взаимодействие железа с углеродом в газовой фазе в наночастицах железа в зоне реакции ниже по потоку, перенос образовавшихся наночастиц карбида железа потоком газа-носителя в зону охлаждения и улавливание их фильтром, при этом источником углерода служит углеродсодержащий газ, который вводят в поток газа-носителя выше зоны реакции через кольцевой зазор в реакторе. Для получения наночастиц карбида железа без содержания металлического железа кольцевой зазор располагают на расстоянии 6-7 мм от нижнего витка противоточного индуктора. Технический результат – обеспечение способа получения карбида железа без содержания металлического железа, высокая технологичность способа, что позволяет существенно расширить область его использования. 1 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к неорганической химии и нанотехнологии и может быть использовано для получения износостойких абразивных материалов, высокотемпературных керамических материалов и покрытий, высокопрочных композиционных материалов. В вертикально ориентированный реактор 1 из термостойкого диэлектрического материала подают нисходящий ламинарный поток газа-носителя 2. Сверху внутрь реактора вводят титановую проволоку, разогревают ее в высокочастотном поле противоточного индуктора 3 до температуры плавления, получают на ее конце каплю 4 расплавленного титана, бесконтактно подвешивают каплю между витками противоточного индуктора и обеспечивают испарение металлического титана с поверхности капли. Потоком газа-носителя 2 непрерывно уносят пары титана от капли 4, обеспечивают конденсацию паров в наночастицы титана в зоне конденсации 5 и направляют их в зону реакции 6, куда также подают углеродсодержащий газ-реагент 7 из натекателя 8. Полученные наночастицы карбида титана переносят в зону охлаждения 9, улавливают их фильтром и получают товарный продукт в виде нанопорошка карбида титана в свободно-насыпном состоянии со средним размером частиц менее 30 нм и с регулируемым соотношением титана и углерода без галогенов и кислорода. Испарение титана из капли 4 восполняют непрерывной подачей титановой проволоки. В качестве газа-носителя используют инертный газ, а в качестве газа-реагента - углеводород из класса алканов, алкенов или алкинов. За счёт непрерывности процесса упрощается технологический цикл и расширяются технологические возможности способа. 2 з.п. ф-лы, 2 ил., 7 пр.

Изобретение может быть использовано при получении аккумуляторов водорода, воспламенительных и термитных составов, катализаторов гидрирования органических соединений. Внутри реактора, представляющего собой трубку Т из прозрачного термостойкого диэлектрического материала, организуют непрерывный нисходящий ламинарный поток газа-носителя 1, например аргона. Сверху в высокочастотное поле противоточного индуктора И вводят титановую проволоку и разогревают ее до температуры плавления. Полученную каплю расплавленного титана К бесконтактно подвешивают и испаряют. Конденсацию паров титана в наночастицы титана осуществляют ниже по потоку газа-носителя 1. Затем горячие наночастицы титана уносят в зону реакции ЗР, выше которой через патрубки 2 или 3 вводят водород в поток газа-носителя 1. В ЗР водород реагирует с металлическим титаном в наночастицах титана с образованием гидрида титана. Полученные наночастицы гидрида титана выводят из ЗР и улавливают фильтром. Восполнение металла в испаряющейся капле К осуществляют непрерывной подачей сверху титановой проволоки. Получают нанопорошок гидрида титана стехиометрического состава TiH2 в свободно-насыпном состоянии со средним размером частиц 25-32 нм. 2 з.п. ф-лы, 4 ил., 3 пр.

Изобретение относится к получению ультрадисперсного порошка цинка. Способ включает подачу цинковой проволоки в непрерывный ламинарный поток газа с разогревом ее в высокочастотном поле противоточного индуктора до температуры плавления и образованием на конце проволоки расплавленной капли, подвешенной в поле упомянутого индуктора, испарение обтекаемой ламинарным потоком газа расплавленной капли с конденсацией паров в частицы металлического цинка, их вынос, охлаждение и улавливание фильтром. В качестве непрерывного ламинарного потока газа используют нисходящий поток газа-восстановителя, состоящий из водорода или его смеси с инертным газом и обеспечивающий восстановление тугоплавкого оксида цинка до металла на поверхности капли. Обеспечивается непрерывный процесс получения ультрадисперсного порошка цинка в свободно-насыпном состоянии. 6 ил., 5 пр.

Изобретение относится к области биотехнологии, конкретно к способу очистки рекомбинантных белков из штаммов-продуцентов микроорганизмов, и может быть использовано в структурной протеомике, при рентгеноструктурном анализе белков с неизвестной функцией, антигенном картировании белков и создании вакцин на основе рекомбинантных белков

 


Наверх