Патенты автора Логачева Алла Игоревна (RU)

Изобретение относится к металлургии, а именно к получению изделий из сплавов молибдена, и может быть использовано для изготовления продукции, подверженной высокотемпературным условиям эксплуатации. Способ изготовления изделий из сплавов молибдена включает выплавку слитка сплава методом капельной электронно-лучевой плавки, горячую обработку давлением заготовок с получением изделий и их термообработку. Из слитка методом газовой атомизации получают гранулы сферической формы, выделяют из них гранулы диаметром от 40 до 180 мкм, размещают их в титановую капсулу, которую заваривают, помещают в газостат и проводят горячее газостатическое прессование при температуре 1250-1450°С до получения заготовок с плотностью не менее 98% от теоретической. Обеспечивается получение изделий из сплавов молибдена высокой химической чистоты, характеризующихся высокой пластичностью. 1 з.п. ф-лы, 2 пр.

Изобретение относится к области машиностроения, в частности к способам соединений труб и арматуры, преимущественно к способам термомеханического соединения труб и трубных элементов из разнородных материалов. Соединение законцовок труб из композиционных волокнистых материалов с металлическими деталями и способ их соединения включают законцовку, трубу и соединитель из материала с эффектом памяти формы. Законцовку выполняют с глухим кольцевым пазом с наружным диаметром, превышающим внешний диаметр трубы на величину зазора между ними. Соединительный элемент выполнен в виде кольца из сплава ТН-1, надетого по внутреннему диаметру паза законцовки. Величина зазора между наружной поверхностью соединителя и внутренней поверхностью трубы выбрана с учетом величины упругой и пластической деформации при восстановлении материалом с эффектом памяти формы заданного натяга между соединительным элементом и трубой. Проводят нагрев соединителя до температуры плюс 250-260°C и выдерживают при этой температуре до момента образования максимального натяга в соединении, после чего неразъемное соединение остывает при комнатной температуре. Технический результат заключается в повышении прочности соединения и его надежности. 2 н.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к области плазменной техники. Предложен способ измерения зазора в плазменной струе между плазмотроном и заготовкой в производстве металлических порошков и гранул. В заявленном способе измерения зазора в плазменной струе между плазмотроном и заготовкой в производстве металлических порошков и гранул производят видеосъемку процесса плавления заготовки цифровой цветной FHD-видеокамерой с черным светофильтром высокой плотности, передачу изображения на ЭВМ. Полученное цифровое изображение подвергается операциям исключения засветок, бликов и избыточности посредством цифрового кадрирования, фильтрации синего и интерактивного формирования полихромного цветового профиля, последующего преобразования в изображение в градациях серого, бинаризации с заданным порогом, выделения информативной области черно-белого изображения по максимуму плотности пиксельного горизонтального заполнения в продольно-вертикальной плоскости. Полученное изображение сравнивают со шкалой измерительной калиброванной размерной сетки и получают результат однократного измерения зазора. Производят накопление выборки измерений и их статистическую обработку с последующей оценкой среднего значения величины зазора и дисперсии. Технический результат - повышение производительности технологического процесса центробежного распыления заготовки. 1 ил.

Изобретение относится к химической промышленности, а именно к области производства гетерогенных катализаторов процессов жидкофазного окисления органических соединений (в том числе, производных фенолов) и может быть применено на предприятиях различных отраслей промышленности для проведения реакций окисления, а также для каталитической очистки сточных вод от токсичных органических контаминантов. Гетерогенный катализатор жидкофазного окисления органических соединений содержит носитель, глутаровый диальдегид в качестве сшивающего агента и экстракт корня хрена (Armoracia Rusticana) в качестве активного компонента. Согласно изобретению в качестве носителя используют диоксид титана, модифицированный последовательно 0,095÷0,105 н. раствором соляной кислоты, 0,195÷0,205%-ным раствором хитозана в 0,0045÷0,0055 М растворе соляной кислоты и 4,95÷5,05%-ным раствором аминопропилтриэтоксисилана в 95,5÷96,5%-ном этаноле при следующем соотношении компонентов, % масс.: диоксид титана - 45÷55; хитозан - 7,5÷12,5; аминопропилтриэтоксисилан - 17,5÷22,5; сшивающий агент (глутаровый диальдегид) - 7,5÷12,5; активный компонент (экстракт корня хрена) - 7,5÷12,5. Технический результат - повышение активности, селективности и операционной стабильности гетерогенного катализатора в реакции жидкофазного окисления органических соединений перекисью водорода. 6 ил., 19 пр.
Изобретение относится к области металлургии цветных металлов, в частности к производству лигатур для легирования жаропрочных сплавов на основе титана

Изобретение относится к изготовлению топливных баков для ракетных и космических аппаратов, в частности к устройствам, выполненным в виде одноразовых пластически деформируемых капсул, которые предназначены для изготовления или формирования корпуса топливного бака ракетной и космической техники из гранул фракционного состава высокопрочного титанового сплава, полученных методом гранульной металлургии, с использованием горячего изостатического прессования

Изобретение относится к корпусам топливных баков для изделий ракетной и космической техники, в частности к устройствам, корпус которых является пневмогидравлической емкостью с эластичной разделительной мембраной для хранения жидкости с возможностью ее вытеснения
Изобретение относится к способам изготовления катодных мишеней, используемых, в частности, при получении жаростойких покрытий для защиты жаропрочных сплавов на основе никеля или кобальта, устанавливаемых в установках для распыления
Изобретение относится к металлургии сплавов, а именно к производству никелевых жаропрочных сплавов, используемых для изготовления теплонагруженных деталей, например корпусов газотурбинных двигателей, работающих в условиях высоких температур и напряжений
Изобретение относится к металлургии сплавов, а именно к производству свариваемых никелевых жаропрочных сплавов, используемых для изготовления теплонагруженных деталей, например корпусов газотурбинных двигателей, работающих в условиях высоких температур и напряжений
Изобретение относится к области металлургии, а именно к производству жаропрочных никелевых сплавов на основе интерметаллида NiAl, используемых для изготовления теплонагруженных деталей газотурбинных двигателей
Изобретение относится к области металлургии, а именно к жаропрочным сплавам на основе интерметаллида Ni3Al и изделиям, получаемым методами гранульной металлургии, преимущественно рабочих и сопловых лопаток высокотемпературных газотурбинных двигателей авиационно-космического, транспортного и энергетического назначения

 


Наверх