Патенты автора Гофман Иосиф Владимирович (RU)

Изобретение относится к изготовлению клеевых материалов для склеивания изделий из полимерных материалов и композитов на их основе. Клеевая композиция для полимерных композиционных материалов содержит полиэтиленполиамин в количестве до 10 мас.% и клеевой состав, включающий растворимый реакционноспособный олигомерный продукт на основе эпихлоргидрина и дефинилолпропана, в качестве которого использована эпоксидная диановая смола марки ЭД-20, или реакционноспособное соединение, в качестве которого использован диглицидиловый эфир бисфенола А. Клеевой состав также включает высокомолекулярный термопластичный полимер - пластификатор, в качестве которого использован полистирол ПСМ 151, растворитель, мелкодисперсный упрочняющий неорганический наполнитель, в качестве которого использован тальк и/или аэросил, и краситель. Изобретение позволяет получить высокопрочные клеевые швы при склеивании изделий из термостойких полимерных материалов с обеспечением технологичности процесса склеивания. 2 ил., 1 табл., 5 пр.

Изобретение относится к области химии высокомолекулярных соединений, конкретно к биосовместимым биоразлагаемым остеокондуктивным композиционным материалам на основе сложных полиэфиров и химически модифицированной наноцеллюлозы. Композиционный материал для регенерации костной ткани характеризуется тем, что состоит из матрицы из сложного полиэфира алифатической гидроксикислоты, выбранного из: поли-D,L-лактида, поли-L-лактида, поли-ɛ-капролактона, полипентадекалактона, полигликолида, полигидроксибутирата, сополимера из перечисленных сложных полиэфиров; и наполнителя в количестве 1-20 мас. %, который представляет собой наноцеллюлозу с гидродинамическим диаметром частиц 100-600 нм, модифицированную пептидом GRGDSP (Gly-Arg-Gly-Asp-Ser-Pro) и по меньшей мере одной анионной поли(аминокислотой), выбранной из ряда: поли(глутаминовая кислота), поли(аспарагиновая кислота), сополимер глутаминовой и аспарагиновой кислот, где материал выполнен в виде пленки или 3D-изделия. Изобретение позволяет получить композиционный материал, который обладает спектром прочностных механических свойств, позволяющих использовать его в качестве имплантата для разных костных дефектов, а также материал является биосовместимым, нетоксичным, способным к кальциевому обмену, биоразлагаемым, доступным из-за использования при его изготовлении коммерческих исходных веществ. 2 з.п. ф-лы, 8 ил., 2 табл., 15 пр.

Изобретение относится к нанотехнологии и может быть использовано при изготовлении нанокомпозитов. Навеску анализируемых углеродных наночастиц: нанотрубок, нановолокон, астраленов, наноконусов/дисков, графена, оксида графена, после их поверхностной обработки диспергируют с помощью ультразвукового диспергатора в воде или органическом растворителе, являющемся растворителем для полимера, в который будут вводиться наночастицы. Затем пробирку, содержащую полученную дисперсию - взвесь однородно черного цвета, помещают в полость измерительного устройства, представляющего собой держатель в виде вертикально установленного на подставке 3 полого металлического цилиндра 1, и включают источники питания 6 и 12 соответственно осветителя 5 и измерительной схемы 8, в которую включён фотоприёмник 7. В результате зондирования указанной дисперсии излучением осветителя 5 и анализа прошедшего через неё потока излучения посредством регистрации тока в измерительной цепи получают кривую зависимости фототока от времени, определяют скорость оседания наночастиц на дно и таким образом контролируют эффективность их поверхностной обработки. 2 н. и 2 з.п. ф-лы, 4 ил.

Изобретение относится к области изготовления нанокомпозитных материалов на основе ароматического полиимида и смесей наночастиц различных типов, которые могут найти применение для изготовления композиционных материалов, а именно стеклопластиков, углепластиков, органопластиков. Описан способ получения нанокомпозитных материалов, характеризующийся тем, что в качестве наноразмерного наполнителя используют смеси различных наночастиц, как минимум двух типов: наночастиц слоевой геометрии, нановолокон, нанотрубок и наноконусов/дисков, вводимых в полимер одновременно или последовательно. Наночастицы вводят в полимер одновременно или последовательно при перемешивании механической мешалкой в течение 24 часов при скорости 1000 об/мин. При этом хотя бы один из нескольких типов используемых наночастиц может быть внесен в полимерную матрицу на стадии ее синтеза (in situ полимеризация). Из полученного нанокомпозитного раствора с помощью щелевой фильеры отливают пленки, сушат их в течение 2 ч при температурах 80°С или 70°С с последующей термообработкой в режиме нагрева до 360°С со скоростью 5 град/мин или до 250°С со скоростью 3 град/мин и выдержкой при этой температуре в течение 15 или 30 мин соответственно. Технический результат – обеспечение полимерного материала с высокой суммарной концентрацией наночастиц, при которой концентрация наночастиц каждого типа остается достаточно низкой для того, чтобы они оставались однородно распределенными в объеме полимера и не образовывали агрегатов, что обеспечивает повышенный уровень таких механических характеристик, как модуль упругости, прочности и предел пластичности. 1 з.п. ф-лы, 1 ил., 1 табл., 7 пр.

Изобретение относится к химии высокомолекулярных соединений, в частности к устройству для получения новых углеродосодержащих нанокомпозитных материалов на основе полимерных матриц и наноразмерных наполнителей. Устройство содержит реакционную камеру, смеситель компонентов, бункеры с исходными компонентами, емкость с дистиллированной водой, аппарат для лиофильной сушки материала, источник инертного газа, камеру для дополнительной обработки композита, емкость для диспергирования композита, контейнер приема нанокомпозита, сообщенный с щелевой фильерой для нанесения нанокомпозита на подложку, и сушильную камеру с вытяжным насосом для термообработки получаемого нанокомпозиционного материала. При этом бункеры соединены со смесителем, оснащенным излучателем ультразвуковых волн для обработки исходных компонентов, подаваемых с помощью насоса в реакционную камеру. Реакционная камера оснащена тепловой рубашкой и имеет дополнительное перфорированное днище, под которым полость соединена со сливным патрубком, имеющим дозатор, и сообщена с источником инертного газа. Сливной патрубок сообщен с емкостью, заполненной дистиллированной водой, полость которой соединена с аппаратом для лиофильной сушки материала, который, в свою очередь, сообщен с камерой для дополнительной обработки материала. Камера дополнительной обработки материала оснащена встроенным излучателем ультразвуковых волн, соединенным с источником инертного газа, а полость камеры соединена с емкостью диспергирования нанокомпозита и у дна имеет микроячеистую многослойную сетку. Емкость диспергирования композита оснащена импеллером для активного перемешивания композита. Изобретение обеспечивает эффективное контролируемое получение нанокомпозитного материала с высокими физико-механическими характеристиками. 3 з.п. ф-лы, 1 ил.

Изобретение относится к медицине, конкретно к области биотехнологических материалов медицинского и технического применения, и может найти использование прежде всего в качестве прекурсора костной ткани, косметики или при создании керамических изделий. Описан способ, который характеризуется тем, что получение нанокомпозита осуществляют в процессе биосинтеза нано-гель-пленки целлюлозы Gluconacetobacter xylinus с включением гидроксиапатита в питательную среду. Гидроксиапатит в форме пасты вводят в питательную среду при биосинтезе нано-гель-пленки целлюлозы Gluconacetobacter xylinus штаммом N 1629 CALU. Целлюлоза в образующихся нано-гель-пленках в композите химически связана с гидроксиапатитом. Нано-гель-пленки целлюлозы Gluconacetobacter xylinus имеют удовлетворительные механические характеристики в сухом состоянии и после суточного набухания в воде их можно использовать в качестве прекурсора костной ткани и в других областях медицины, а также в технике. 6 пр.

Изобретение относится к полимерному лиганду с антраниламидными звеньями в основной цепи и к металл-полимерному комплексу, в котором полимерный лиганд образует люминесцирующие комплексы с ионами редкоземельных элементов

 


Наверх