Патенты автора Бесчастных Владимир Николаевич (RU)

Изобретение относится к области энергетики, а именно к многофункциональной измерительной технике в качестве имитатора нагрузки для проведения испытаний холодильных установок и источников энергии. Мобильный стенд состоит из транспортной платформы с установленными на ней колоннами-емкостями (3), снабженными электрическими нагревательными элементами (5). Внутренние объемы колонн-емкостей (3) последовательно соединены гидравлическими трубопроводами (4), между выходом (9) из последней по потоку колонны-емкости (3) и входом источника (23) рабочего тела установлены датчик (12) измерения расхода жидкости и датчик (14) температуры. Также между выходом из источника (23) рабочего тела и входом (8) первой по потоку колонны-емкости (3) установлен второй датчик (13) температуры. Каждый электрический нагревательный элемент (5) подключен к источнику (16) электрической энергии параллельно через по меньшей мере один датчик (17) измерения электрической мощности, каждый из упомянутых датчиков (12, 13, 14, 17) соединен с блоком (19) управления, выполненным с возможностью включения каждого из электрических нагревательных элементов (5). Также раскрыт способ работы мобильного стенда. Обеспечивается снижение массы испытательного стенда и повышение точности полученных в ходе испытания данных. 2 н. и 7 з.п. ф-лы, 3 ил.

Изобретение относится к теплотехнике, а именно к системам регулирования теплового режима различных установок. Устройство поддержания температурного режима потребителя содержит первый и второй контуры циркуляции охлаждающей жидкости и контур холодильной машины. Первый контур циркуляции включает насос (1), жидкостно-воздушный теплообменник (4) с одним вентилятором (7), датчики температуры (9, 10), запорные элементы (5, 6). Второй контур циркуляции включает насос (11). Контур холодильной машины включает компрессор (8), конденсатор (12), дроссель (13) и испаритель (2). Испаритель (2) является общим элементом для контура холодильной машины и первого контура, конденсатор (12) - для контура холодильной машины и второго контура, а теплообменник (4) - для первого и второго контуров. Насос (1) первого контура соединен с потребителем (3) через испаритель (2) и нагреватель (14), установленные таким образом, что выход испарителя (2) соединен со входом нагревателя (14), а выход нагревателя (14) соединен со входом потребителя (3). Также раскрыт способ работы устройства поддержания температурного режима. Технический результат заключается в улучшении поддержания рабочей температуры потребителя тепла в заданных пределах. 2 н. и 6 з.п. ф-лы, 1 ил.

Изобретение относится к области энергетики, а именно к газотурбинным электростанциям с несколькими газотурбинными установками и способам их управления. Газотурбинная электростанция, включает газотурбинные установки (1, 2, 3), каждая из которых состоит из камеры (6) сгорания, устройства (9) подачи топлива в камеру (6) сгорания, компрессора (5), турбины (7), турбогенератора (8). Каждое из устройств (9) подачи топлива и турбогенераторов (8) соединены с блоком (4) управления, выполненным с возможностью управления работой каждой газотурбинной установки (1, 2, 3). По меньшей мере одна газотурбинная установка (1) включает рекуператор (10), один вход которого соединен с выходом камеры (6) сгорания и один выход которого соединен с входом турбины (7), а другой вход рекуператора (10) соединен с выходом турбины (7), кроме того, электростанция включает по меньшей мере одну аккумуляторную батарею (11) и систему (12) преобразования энергии, выполненную с возможностью преобразования и передачи выработанной турбогенераторами (8) электрической энергии во внешнюю сеть (13) и/или по меньшей мере одной аккумуляторной батарее (11). Также раскрыт способ управления газотурбинной электростанцией. Технический результат заключается в повышении эффективности работы электростанции за счет обеспечения оптимального режима работы каждой газотурбинной установки. 2 н. и 8 з.п. ф-лы, 6 ил.

Изобретение относится к машиностроению, а именно к стендам для испытания компрессоров. Испытательный стенд лопаточных компрессоров, содержащий первую пневматическую магистраль (16), включающую технологический компрессор (8) с регулируемым приводом (12), охладитель (10) воздуха и детандер (13), вторую пневматическую магистраль (14), включающую испытуемый компрессор (4), турбину (2), и криогенный теплообменник (6). При этом вторая пневматическая магистраль (14) включает линию (17) подвода азота с запорным элементом (18) и линию (19) отвода азота с запорным элементом (20), а также по меньшей мере один запорный элемент (21), при этом линии (17, 19) подвода и отвода и по меньшей мере один запорный элемент (21) установлены таким образом, что азот при подаче из линии (17) подвода во вторую пневматическую магистраль (14) направляют по меньшей мере через испытуемый компрессор (4) и далее отводят через линию (19) отвода. Также раскрыт способ газодинамических испытаний лопаточных компрессоров. Технический результат заключается в исключении обмерзания в пневматической магистрали, в частности исключении обмерзания пневматической магистрали при испытании лопаточных компрессоров, и, как следствие, получении более достоверных характеристик. 2 н. и 7 з.п. ф-лы, 1 ил.

Изобретение относится к области теплоэнергетики, а именно к способам и установкам для экологически чистой выработки механической и тепловой энергии. Установка для выработки тепловой и механической энергии состоит из камеры сгорания (1), соединенной с парогазовой турбиной (2), охладителей отработанных газов, линий подачи углеродсодержащего топлива (4), диоксида углерода (5), кислорода (6) и воды (7) в камеру сгорания (1), при этом дополнительно включает по меньшей мере две парогазовые турбины, по меньшей мере одна из которых является парогазовой турбиной (7) среднего давления, а по меньшей мере другая - парогазовой турбиной (8) низкого давления, при этом парогазовая турбина (2), соединенная с камерой сгорания (1), является парогазовой турбиной высокого давления, каждая парогазовая турбина (2, 7, 8) соединена с по меньшей мере двумя электрогенераторами (9), соединенными с блоком (10) управления, выполненным с возможностью изменения режима работы по меньшей мере части электрогенераторов (9) с обеспечением компенсации реактивной мощности в электрической сети, а также по меньшей мере один датчик мощности, соединенный с блоком (10) управления, кроме того, блок (10) управления выполнен с возможностью определения коэффициента мощности. Также раскрыт способ регулирования установки для выработки тепловой и механической энергии. Технический результат заключается в повышении надежности установки, при сохранении высокого КПД, за счет ступенчатого уменьшения давления, что повышает использование парогазовой смеси, а также в повышении надежности установки за счет уменьшения реактивной мощности. 2 н. и 5 з.п. ф-лы, 1 ил.

Изобретение относится к теплотехнике и может быть использовано в технике для подогрева жидких или газообразных сред, например, в качестве рекуператора. Рекуперативный теплообменник, содержащий цилиндрический корпус (3), имеющий на торцах фланцы (13), выполненные с возможностью разъемного соединения с участком трубопровода, в котором протекает греющее второе рабочее тело, коллектор (1) подвода первого рабочего тела, коллектор (4) отвода нагретого первого рабочего тела, при этом каждый коллектор (1, 4) соединен с по меньшей мере одним трубопроводом (2, 5), по которым обеспечивается подача и отвод первого рабочего тела, а также фиксация коллекторов (1, 4) внутри цилиндрического корпуса (3), кроме того, внутренняя полость коллектора (1) подвода первого рабочего тела соединена с внутренней полостью коллектора (4) отвода нагретого первого рабочего тела по меньшей мере одной секцией, содержащей по меньшей мере один ярус теплообменного трубопровода (10), установленным таким образом, чтобы его внешняя поверхность находилась в контакте с греющим вторым рабочим телом в канале (6) протекания греющего второго рабочего тела, при этом по меньшей мере один ярус трубопровода (10) включает по меньшей мере один изогнутый участок. Также раскрыт способ изготовления рекуперативного теплообменника. Технический результат заключается в повышении жесткости и прочности теплообменника, а также в упрощении изготовления теплообменника. 2 н. и 8 з.п. ф-лы, 6 ил.

Изобретение относится к теплотехнике и может быть использовано в теплообменниках для подогрева/охлаждения жидких или газообразных сред. Рекуперативный теплообменник (8) состоит из передней (12) и задней (13) стенок, внешнего корпуса (7), внутри которого расположены каналы (9) второго теплоносителя, имеющие входные (10) и выходные (11) окна, расположенные соответственно в передней стенке (12) и в задней стенке (13), при этом проходное сечение каждого канала (9) в направлении от входного окна (10) к выходному окну (11) уменьшается. Между внешним корпусом (7) и по меньшей мере частью внешних поверхностей каналов (9) второго теплоносителя расположена теплоизолированная разделительная стенка (14) для разделения входящего и выходящего потоков первого теплоносителя с образованием продольного кольцевого канала (16) первого теплоносителя. Для прохождения первого теплоносителя выполнены перегородки (15), установленные с образованием лабиринтных каналов (17), причем проходное сечение лабиринтных каналов (17) увеличивается в направлении от задней стенки (13) к передней стенке (12), через эти перегородки (15) проходят каналы (9) второго теплоносителя. Также раскрыт способ работы рекуперативного теплообменника. Технический результат заключается в повышении коэффициента теплоотдачи, а также уменьшении гидравлических потерь в теплообменнике. 2 н. и 8 з.п. ф-лы, 7 ил.

Изобретение относится к теплотехнике и может быть использовано в технике для подогрева жидких или газообразных сред, например, в качестве рекуператора. Пластинчатый теплообменник, содержащий цилиндрический кожух (2), теплообменные элементы (3), выполненные из попарно соединенных по периферийным кромкам гофрированных пластин и имеющие выступающие за периферийную кромку отбортовки, образующие впускные (7) и выпускные (8) коллекторные окна, зафиксированные в соединительных элементах (12). Корпус (9) теплообменника дополнительно содержит внешний кожух (1). Цилиндрический кожух (2) с одной стороны имеет фланец для соединения с камерой сгорания газотурбинной установки, при этом фланец выполнен с выступами (14), образующими с внутренней поверхностью корпуса газотурбинной установки перепускные окна для пропускания воздуха в теплообменник, и выполнен с возможностью разделения потоков воздуха, потока, поступающего во впускные (7) коллекторные окна теплообменных элементов (3) от компрессора газотурбинной установки, и потока, поступающего в камеру сгорания из выпускных (8) коллекторных окон теплообменных элементов (3), при этом впускные (7) коллекторные окна расположены на противоположной стороне от камеры сгорания. Внешний кожух (1) теплообменника установлен с образованием кольцевого канала (6) для подачи воздуха от компрессора газотурбинной установки к впускным (7) коллекторным окнам теплообменных элементов (3). Также раскрыт способ изготовления пластинчатого теплообменника. Технический результат - повышение жесткости и прочности теплообменника, упрощение его изготовления. 2 н. и 6 з.п. ф-лы, 6 ил.

Изобретение относится к деталям машин, а именно к конструкциям радиальных газодинамических подшипников, предназначенных для использования, в частности, в высокоскоростных роторных системах, например, компрессоров, турбин, электрогенераторов. Радиальный лепестковый газодинамический подшипник состоит из цилиндрического корпуса (1), включающего внутреннюю опорную поверхность (2) и по меньшей мере два Г-образных паза (3), выполненных с возможностью установки в эти пазы (3) отбортовки (4) лепестков (5) подшипника. Лепестки (5) подшипника включают в себя рабочий участок (9), включающий входную и выходную кромки (12 и 11) и взаимодействующий с цапфой ротора (6). Упруго демпферный участок (10) лепестка (5) состоит из упругих балок (7), соединенных между собой перемычками (8). Между рабочим (9) и упруго демпферным (10) участками и между упруго демпферным участком (10) и отбортовкой (4) каждого лепестка (5) выполнены отверстия (15, 14). Лепестки (5) подшипника установлены внутри корпуса (1) таким образом, что упруго демпферный участок (10) одного лепестка (5) располагается между рабочим участком (9) другого лепестка (5) и внутренней опорной поверхностью (2). Диаметр внутренней опорной поверхности (2) выбирается таким образом, чтобы между упруго демпферным участком (10) каждого лепестка (5) и внутренней опорной поверхностью (2) обеспечивался радиальный зазор h. Ширина Г-образных пазов (3) выполняется такой, чтобы обеспечить установку в них отбортовки (4) лепестка (5) с зазором h1, при этом зазор h1 больше или равен зазору h. Технический результат: повышение демпфирующей способности, а также максимальное использование рабочей поверхности подшипника для обеспечения грузоподъемности, в том числе для подшипников малой размерности (менее 20 мм). 6 з.п. ф-лы, 7 ил.

Изобретение относится к теплотехнике и может быть использовано в технике для подогрева жидких или газообразных сред, например, в качестве рекуператора. Способ изготовления пластинчатого теплообменника, заключающийся в том, что наружные и внутренние гофрированные пластины изготавливают методом штамповки, а затем попарно соединяют по периферийным кромкам, а образованные при этом теплообменные элементы (1) соединяют друг с другом с помощью наружного цилиндрического корпуса, двух периферийных (3, 4) и одного центрального (2) разделительных колец, в каждом теплообменном элементе (1) выполняют отбортовки (11, 12), образующие впускные и выпускные коллекторные окна (13, 14), таким образом, что они (11, 12) выступают за периферийную кромку пластин по внутреннему диаметру теплообменника, при этом периферийные (3, 4) кольца изготавливают соединением по меньшей мере двух соединительных элементов (15) таким образом, чтобы они образовывали замкнутую линию, при этом в каждый соединительный элемент (15) устанавливают по меньшей мере два теплообменных элемента (1). Также раскрыт пластинчатый теплообменник. Технический результат заключается в повышении размерной точности позиционирования соединяемых, например, сваркой кромок элементов конструкции, при которой смещение соединяемых кромок от номинального положения не будет превышать 0,5 мм, что позволит осуществить автоматизированную сборку, например сварку в крупногабаритной сборочной единице. 2 н. и 8 з.п. ф-лы, 7 ил.

Изобретение относится к деталям машин, а именно к конструкциям радиальных и упорных газостатических подшипников, предназначенных для использования, в частности, в высокоскоростных роторных системах, например компрессорах, турбинах, электрогенераторах. Лепестковый газостатический подшипник включает цилиндрический корпус (1), на котором сформированы подводящие каналы (2). В корпусе (1) выполнены тангенциальные пазы (6), в которые со стороны внутренней опорной поверхности (7) вставлены рабочие лепестки (4) подшипника и пружины (5) вторичной жесткости, в которых выполнены упругие балки, выполненные с возможностью обеспечения упругого поджатия рабочих лепестков (4) подшипника к валу. Упругие балки (10) устанавливаются в зазор между рабочим лепестком (4) подшипника и корпусом (1). Подводящие каналы (2) выполнены упругими и заканчиваются камерами, в которых выполнено по меньшей мере одно отверстие первичного дросселя, которое выполнено с возможностью обеспечения подачи газа от внешнего источника из камер в карманы. Карманы расположены над отверстиями в рабочих лепестках (4), указанные отверстия в рабочих лепестках (4) образуют по меньшей мере три камеры, а кромки карманов прижаты к внутренним поверхностям рабочих лепестков (4) за счет сил упругости подводящего канала (2), обеспечиваемых конструктивным натягом. Упругие балки пружин (5) вторичной жесткости в местах примыкания кромки карманов к внутренним поверхностям рабочих лепестков (4) отсутствуют. Также раскрыт способ изготовления лепесткового газостатического подшипника. Технический результат: осуществление газостатического режима работы подшипника, уменьшение износа, а также увеличение давления в зоне пониженного давления эпюры гидродинамической смазки. 2 н. и 18 з.п. ф-лы, 12 ил.

Изобретение относится к теплотехнике, а именно к системам регулирования теплового режима различных установок. Устройство поддержания температурного режима потребителя содержит первый и второй контуры циркуляции охлаждающей жидкости, контур холодильной машины. Причем первый контур включает в себя насос (1) первого контура циркуляции охлаждающей жидкости, выход которого соединен через испаритель (2) с потребителем (3), выход которого соединен со входом насоса (1) через по меньшей мере один жидкостно-воздушный теплообменник (4), выполненный с возможностью охлаждения потоком воздуха от по меньшей мере одного вентилятора (7), а также два датчика температуры (9, 10), установленные на входе и выходе из потребителя (3). Два запорных элемента (5, 6), один (5) из которых установлен на линии подачи охлаждающей жидкости в насос 1 первого контура через по меньшей мере один жидкостно-воздушный теплообменник 4, а другой (6) - на линии, соединяющей выход потребителя (3) с входом насоса (1) и параллельной линии подачи охлаждающей жидкости через по меньшей мере один жидкостно-воздушный теплообменник 4. Второй контур включает в себя насос (11) второго контура, выход которого соединен через конденсатор (12) со входом по меньшей мере одного жидкостно-воздушного теплообменника (4), выход которого соединен с насосом (11) второго контура циркуляции охлаждающей жидкости. Контур холодильной машины включает в себя компрессор (8), выход которого соединен через конденсатор (12) и дроссель (17) холодильной машины с испарителем (2), выход которого, в свою очередь, соединен со входом компрессора (8), байпасную магистраль с краном (14), соединяющую выход компрессора (8) с испарителем (2) в обход конденсатора (12). Кран (14) выполнен с возможностью регулирования количества хладагента, проходящего через байпасную магистраль холодильной машины, и два датчика температуры (15, 16), один (15) из которых расположен на входе в испаритель (2), а другой - на выходе из конденсатора (12). Также раскрыт способ работы устройства поддержания температурного режима. Технический результат заключается в улучшении поддержания рабочей температуры потребителя тепла в заданных пределах, за счет обеспечения предварительного подогрева потребителя и вывода его на рабочий режим при отрицательных температурах. 2 н. и 8 з.п. ф-лы, 1 ил.

Изобретение относится к теплотехнике и может быть использовано в технике для подогрева жидких или газообразных сред, например, в качестве рекуператора. Пластинчатый теплообменник содержит первую секцию теплообменника, которая включает цилиндрический наружный корпус, одно центральное и два периферийный разделительных кольца, размещенные между корпусом и кольцами и опирающиеся на центральное разделительное кольцо теплообменные элементы, выполненные из попарно соединенных по периферийным кромкам гофрированных пластин, при этом теплообменные элементы имеют выступающие за периферийную кромку отбортовки, образующие впускные и выпускные коллекторные окна, соединенные без зазора с окнами соседних теплообменных элементов и охватываемые разделительными кольцами, причем отбортовки, центральное и периферийные кольца формируют коллекторы подвода и отвода внутреннего теплоносителя, а торцевые части теплообменника выполнены таким образом, чтобы обеспечить возможность прохождения между теплообменными элементами внешнего теплоносителя, при этом теплообменник снабжен дополнительной секцией, аналогичной по конструкции и расположенной коаксиально первой секции. Технический результат – снижение массы теплообменника при одновременном увеличении его эффективности и надежности. 2 н. и 22 з.п. ф-лы, 12 ил.

Изобретение относится к энергетике, а именно к истираемым уплотнениям для газовой турбины, имеющим ячеистые металлические структуры, применяемым для уплотнения зазоров между лопатками вращающегося колеса и статором турбомашин. Истираемое уплотнение (3) содержит основу (4) уплотнения и сотовую структуру с наполнителем. Сотовая структура и основа (4) представляют собой одну деталь, изготовленную с помощью аддитивных технологий. Каждая ячейка (5) соединена с по меньшей мере одной соседней ячейкой с помощью отверстия (6). Отверстие (6) выполнено в стенке сотовой структуры. Ячейки и каждое отверстие (6), соединяющее соседние ячейки, заполнены наполнителем, в качестве которого применяется теплоизоляционный материал. Также раскрыт способ изготовления истираемого уплотнения. Технический результат заключается в увеличении срока службы сотового уплотнения, за счет снижения вероятности выкрашивания и разрушения сотовой структуры истираемого уплотнения. 2 н. и 6 з.п. ф-лы, 4 ил.

Изобретение относится к теплотехнике и может быть использовано в технике для подогрева жидких или газообразных сред, например, в качестве рекуператора. Пластинчатый теплообменник, содержащий цилиндрический наружный корпус, одно центральное и два периферийных разделительных кольца, размещенные между корпусом и кольцами и опирающиеся на центральное разделительное кольцо теплообменные элементы, выполненные из попарно соединенных по периферийным кромкам гофрированных пластин, при этом теплообменные элементы имеют выступающие за периферийную кромку отбортовки, образующие впускные и выпускные коллекторные окна, соединеные без зазора с окнами соседних теплообменных элементов и охватываемые разделительными кольцами, причем отбортовки, центральное и периферийные кольца формируют коллекторы подвода и отвода внутреннего теплоносителя, а торцевые части теплообменника выполнены таким образом, чтобы обеспечить возможность прохождения между теплообменными элементами внешнего теплоносителя. Технический результат – снижение массы и повышение герметичности и прочности теплообменника. 2 н. и 18 з.п. ф-лы, 10 ил.

Группа изобретений относится к машиностроению, в частности к турбостроению, и может быть использована в паротурбинных приводах, транспортных газотурбинных двигателях, а также в турбокомпрессорах двигателей внутреннего сгорания. Регулируемый сопловой аппарат турбины содержит внутренний корпус, наружный корпус, неподвижные лопатки, подвижные лопатки, поворотный механизм, при этом подвижные лопатки имеют полки, на наружной поверхности которых со стороны корыта подвижной лопатки закреплены цапфы, опирающиеся на внутренний и наружный корпуса, а поворотный механизм содержит зубчатое кольцо, выполненное с возможностью вращения, и зубчатые сектора, причем зубчатый сектор каждой подвижной лопатки расположен на продолжении одной из полок подвижной лопатки. Также раскрыто устройство турбины и способ работы турбины. Технический результат заключается в повышении экономичности турбины в широком диапазоне эксплуатационных режимов за счет обеспечения изменения углов установки лопаток регулируемого соплового аппарата, а также повышение надежности турбины за счет упрощения конструкции механизма регулирования и сокращения количества уплотнений. Кроме того, обеспечивается уменьшение гидравлических потерь в сопловом аппарате и достигается более эффективная работа соплового аппарата на номинальном режиме и режиме частичных нагрузок. 3 н. и 6 з.п. ф-лы, 5 ил.

Изобретение относится к деталям машин, а именно к конструкциям радиальных подшипников скольжения, используемых в высокоскоростных роторных системах, например, компрессоров, турбин, электрогенераторов. Радиальный подшипник скольжения содержит корпус (1), как минимум один сегмент (2), смонтированный в корпусе (1) посредством пальца (4), размещенного в соосных отверстиях корпуса (1). На внутренней поверхности корпуса (1) выполнена канавка (1а). Соосные отверстия для пальца (4) на корпусе (1) выполнены в области канавки (1а). На сегменте (2) имеется цапфа (2а) с отверстием. Монтаж сегмента (1) в корпусе (2) осуществлен посредством пальца (4), размещенного с зазором в демпферных втулках (3), установленных с зазором в соосных отверстиях корпуса (1), и пропущенного через отверстие цапфы (2а), размещенной с осевым и радиальным зазорами в канавке корпуса (1). На пальце (4) выполнен кольцевой выступ (4а), имеющий сферическую форму, который расположен с зазором в отверстии цапфы (2а). Технический результат: обеспечение безаварийной эксплуатации высокоскоростных роторных систем машин за счет обеспечения демпфирования колебаний установленных в подшипниках их вращающихся частей демпфирующими элементами подшипников. 3 з.п. ф-лы, 8 ил.

Изобретение относится к деталям машин, а именно, к конструкциям радиальных и упорных газостатических подшипников, предназначенных для использования, в частности, в высокоскоростных роторных системах, например, компрессоров, турбин, электрогенераторов. Подшипник газостатический содержит выполненный в виде кольца корпус (1), имеющий, как минимум, одну колодку (3), на опорной поверхности которой выполнены две канавки, имеющие возможность соединения через выполненные в колодке (3) дроссельные отверстия с системой подачи смазки в смазочный зазор подшипника, образованный валом и опорной поверхностью колодки (3), одна (10) из канавок выполнена прямолинейной и расположена со стороны входной кромки опорной поверхности колодки (3), а вторая (11) расположена со стороны выходной кромки опорной поверхности колодки (3) и имеет серповидную или дугообразную форму. На внутренней образующей поверхности корпуса (1) выполнена кольцевая канавка, а на колодке (3) имеется цапфа с отверстием. Монтаж колодки (3) на корпусе (1) осуществлен посредством пальца (6), введенного во втулки (5), установленные в отверстиях корпуса (1), выполненных в области кольцевой канавки, и проходящего через отверстие цапфы (4), размещенной с зазором в кольцевой канавке корпуса (1). При этом на пальце (6) выполнен кольцевой выступ, имеющий сферическую форму, который расположен с зазором в отверстии цапфы. Технический результат: повышение грузоподъемности подшипника при минимальном расходе смазки. 5 з.п. ф-лы, 5 ил.

Изобретение относится к парокомпрессионным установкам, работающим по разомкнутому циклу, принцип действия которых основан на создании в камере разрежения, сопровождающегося кипением и испарением жидкого рабочего тела, последующего сжатия полученного пара и его конденсации в камере конденсации (обратный цикл Карно)

 


Наверх