Патенты автора Лапин Владимир Григорьевич (RU)

Заявлен мощный полевой транзистор СВЧ, содержащий полуизолирующую полупроводниковую подложку, на лицевой стороне которой выполнена заданная структура полупроводниковых слоев на основе арсенида галлия, на лицевой стороне которой - по меньшей мере одна заданная топология пассивной и активной областей полевого транзистора, последняя представляет собой последовательность элементов - единичных электродов истока, затвора, стока, каждый с соответствующими контактными площадками, токопроводящего канала с канавкой между каждой парой единичных электродов исток - сток под каждый единичный электрод затвора, при этом одноименные единичные электроды - истока, затвора, стока соединены электрически. В котором на поверхности заданной топологии пассивной и активной областей полевого транзистора либо на поверхности заданной топологии пассивной области и на поверхности отдельных элементов заданной топологии активной области в различной их комбинации выполнено высокотеплопроводящее покрытие из высокотеплопроводящего материала с удельной теплопроводностью k, толщиной H, причём произведение удельной теплопроводности k и толщины H составляет величину более 10-4 Вт/К. Технический результат - повышение удельной выходной мощности, выходной мощности, коэффициента усиления, долговечности, расширение функциональных возможностей. 7 з.п. ф-лы, 3 ил.

Изобретение относится к электронной технике и может быть использовано в качестве активных элементов устройств СВЧ. Полевой транзистор СВЧ с барьером Шоттки содержит полуизолирующую подложку арсенида галлия с активным и контактным слоями, гребенку из чередующейся последовательности единичных электродов исток-затвор-сток, при этом между электродами исток-сток расположены области полуизолирующего арсенида галлия шириной не менее 4,0 мкм, в парах электродов исток-сток расположены каналы с канавками, в последних расположены электроды затвора, при этом - асимметрично в сторону электродов истока, в канале каждой из пар электродов исток-сток, со стороны электрода истока расположен диэлектрический слой из материала с низкой диэлектрической проницаемостью, каждый из электродов затвора относительно его боковой поверхности со стороны электрода стока выполнен по высоте с разным размером поперечного сечения в сторону электрода истока, при этом нижняя часть - с меньшим, верхняя часть - с большим, одноименные электроды исток-затвор-сток соединены электрически, при этом канавка канала выполнена глубиной не более 0,3 мкм, диэлектрический слой в канале каждой из пар электродов исток-сток выполнен и со стороны электрода стока, при этом оба диэлектрических слоя выполнены из одного материала, с относительной диэлектрической проницаемостью менее 8,0, одинаковой толщины 0,1-0,25 мкм, расстояние между упомянутыми обоими диэлектрическими слоями соответствует ширине канавки канала и равно 0,3-1,0 мкм, нижняя часть электрода затвора выполнена по длине с размером поперечного сечения 0,03-0,5 мкм, по высоте - равной сумме значений глубины канавки канала и толщины диэлектрического слоя и расположена непосредственно на верхней поверхности канавки канала, её боковая поверхность со стороны электрода стока - по всей глубине боковой поверхности канавки канала и по всей толщине боковой поверхности диэлектрического слоя, верхняя часть электрода затвора выполнена с размером поперечного сечения по длине, превышающим размер поперечного сечения по длине нижней части на 0,3-0,6 мкм, при этом превышающая ее часть расположена непосредственно на верхней поверхности диэлектрического слоя, длина электрода затвора соответствует размеру поперечного сечения по длине его нижней части и соответственно равна 0,03-0,5 мкм. Изобретение обеспечивает повышение выходной мощности, коэффициента усиления, пробивного напряжения и снижение коэффициента шума. 3 з.п. ф-лы, 1 ил., 1 табл.

Изобретение предназначено для разработки и производства широкого класса устройств электронной техники СВЧ, в том числе радиолокационных устройств. Полевой транзистор СВЧ на полупроводниковой гетероструктуре содержит полупроводниковую подложку и последовательность, по меньшей мере, одного слоя широкозонного и одного слоя узкозонного материалов с заданными характеристиками полупроводниковой гетероструктуры типа AlGaAs-InGaAs-GaAs, электроды истока, затвора, стока, расположенные на лицевой стороне полупроводниковой гетероструктуры. При этом упомянутая полупроводниковая гетероструктура выполнена в виде последовательности следующих основных слоев: буферного слоя GaAs, толщиной более 200,0 нм, группы барьерных слоев AlxGa1-xAs, в виде i-p-i системы барьерных слоев, толщиной 100,0-200,0 нм, 1,0-20,0 нм, 2,0-15,0 нм соответственно, с концентрацией легирующей, акцепторной примеси более 2,0×1018 см-3, расположенных на лицевой стороне полупроводниковой подложки, группы проводящих слоев, формирующих канал полевого транзистора, в составе, по меньшей мере, одного - δn-слоя, легированного донорной примесью с поверхностной плотностью легирующей примеси (1,0-30,0)×1012 см, спейсерного i-слоя AlxGa1-xAs, толщиной 1,0-5,0 нм, собственно канального слоя InyGai_yAs либо группы слоев последнего, каждый с различным количественным составом (у) химического элемента индия (In), равным или менее 1,0 мольных долей, общей толщиной более 3,0 нм, при этом δn-слой расположен на группе барьерных слоев AlxGa1-xAs, спейсерный i-слой - между δn-слоем и собственно канальным слоем. Изобретение обеспечивает повышение коэффициента усиления и выходной мощности. 1 з.п. ф-лы, 1 табл., 2 ил.

Заявлен полевой транзистор с барьером Шотки, содержащий полуизолирующую подложку, электроды истока, затвора, стока, на полуизолирующей подложке выполнен неоднородно легированный активный полупроводниковый слой из двух частей - первой и второй, первая часть - на заданном расстоянии от электрода затвора, с концентрацией легирующей примеси более 2×1017 см-3 и заданной поверхностной плотностью этой примеси, вторая часть - между упомянутой первой частью и электродом затвора, с концентрацией легирующей примеси менее 2×1017 см-3, электрод затвора выполнен на противоположной поверхности активного полупроводникового слоя. Полуизолирующая подложка выполнена из монокристаллического арсенида галлия, упомянутая первая часть неоднородно легированного активного полупроводникового слоя выполнена на расстоянии от электрода затвора более 0,05 мкм, толщиной менее 0,07 мкм, с поверхностной плотностью легирующей примеси (0,6-3,0)×1012 см-2, полевой транзистор с барьером Шотки дополнительно содержит буферный и контактный слои, при этом буферный слой выполнен между упомянутой полуизолирующей подложкой и неоднородно легированным активным полупроводниковым слоем, толщиной более 0,2 мкм, контактный слой выполнен на второй части неоднородно легированного активного полупроводникового слоя, толщиной более 0,01 мкм, с концентрацией легирующей примеси более 2×1018 см-3, на противоположной его поверхности выполнены электроды истока и стока, расстояние между границами контактного слоя под электродами истока и стока более 0,8 мкм, упомянутый электрод затвора выполнен длиной менее 0,7 мкм, на равном расстоянии от центра между границами контактного слоя под электродами истока и стока, либо смещен в сторону электрода истока. Технический результат - повышение коэффициента усиления полевого транзистора с барьером Шотки, снижение уровня низкочастотных шумов устройств СВЧ на ПТШ. 3 ил., 1 табл.

Изобретение относится к электронной технике СВЧ, а именно к мощным полевым транзисторам на полупроводниковой гетероструктуре. В мощном полевом транзисторе СВЧ на полупроводниковой гетероструктуре, содержащем полупроводниковую подложку и последовательность по меньшей мере одного слоя широкозонного и одного слоя узкозонного материала полупроводниковой гетероструктуры с заданными характеристиками и электроды истока, затвора, стока, выполненные согласно заданной топологии полевого транзистора, упомянутая полупроводниковая гетероструктура выполнена в виде последовательности по меньшей мере одного буферного слоя GaAs, группы проводящих слоев, формирующих канал полевого транзистора, в составе собственно канального слоя InyGa1-yAs по меньшей мере двух дельта-легированных донорной примесью δn-слоев и двух не легированных примесью спейсерных i-слоев AlxGa1-xAs, попарно расположенных по обе стороны собственно канального слоя, двух групп барьерных слоев AlxGa1-xAs, каждая в виде системы барьерных слоев, одна из которых расположена с одной стороны группы проводящих слоев - подложечная, другая - с противоположной стороны - затворная, при этом подложечная группа барьерных слоев выполнена в виде акцепторно-донорной i-p-i-δn системы барьерных слоев AlxGa1-xAs, затворная группа барьерных слоев - в виде донорно-акцепторной δn-i-p-i системы барьерных слоев AlxGa1-xAs, при этом прилегающий δn-слой, легированный донорной примесью, каждой группы барьерных слоев является одновременно δn-слоем, легированным донорной примесью, для соответствующей группы проводящих слоев, электрод затвора выполнен планарно на наружном не легированном примесью i-слое AlxGa1-xAs затворной группы барьерных слоев, либо планарно в любом другом возможном слое полупроводниковой гетероструктуры выше последнего, электроды истока и стока выполнены каждый в соответствующем дополнительно сформированном углублении в полупроводниковой гетероструктуре, при этом дно каждого упомянутого углубления расположено вровень с нижней границей легированного акцепторной примесью р-слоя затворной группы барьерных слоев либо ниже в любом другом слое полупроводниковой гетероструктуры вплоть до полупроводниковой подложки. Технический результат изобретения - повышение выходной мощности, коэффициента усиления и коэффициента полезного действия. 3 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к электронной технике СВЧ. В мощном полевом транзисторе СВЧ на полупроводниковой гетероструктуре упомянутая полупроводниковая гетероструктура выполнена в виде последовательности следующих основных слоев, по меньшей мере, одного буферного слоя GaAs толщиной не менее 200 нм, группы проводящих слоев, формирующих канал полевого транзистора, в составе собственно канального слоя InyGa1-yAs толщиной 12-18 нм и, по меньшей мере, двух δn-слоев, легированных донорной примесью, и двух спейсерных i-слоев AlxGa1-xAs толщиной каждый 1-3 нм, попарно расположенных по обе стороны собственно канального слоя, двух групп барьерных слоев AlxGa1-xAs, каждая в виде i-p-i системы барьерных слоев, одна из которых расположена с одной стороны группы проводящих слоев - подложечная, другая - с противоположной стороны - затворная, при этом барьерные слои в каждой i-p-i системе имеют толщину (100-200, 4-15, 2-10) нм в подложечной, (2-10, 4-10, 4-15) нм в затворной соответственно, уровень легирования акцепторной примесью (4-20)×1018 см-2 соответственно, барьерного слоя i-GaAs толщиной 5-30 нм, слоя омического контакта n+-GaAs толщиной (10-60) нм электродов истока и стока, при этом электрод затвора выполнен длиной не более 0,5 мкм. Технический результат - повышение выходной мощности и коэффициента усиления. 2 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к электронной технике СВЧ. В мощном полевом транзисторе СВЧ на полупроводниковой гетероструктуре упомянутая гетероструктура выполнена в виде последовательности следующих основных слоев: по меньшей мере одного буферного слоя GaAs толщиной не менее 200 нм, группы проводящих слоев, формирующих канал полевого транзистора, в составе собственно канального слоя InyGa1-yAs толщиной 12-20 нм и по меньшей мере двух δn-слоев, легированных донорной примесью, и двух спейсерных i-слоев AlxGa1-xAs, толщиной каждый 1-3 нм, двух групп барьерных слоев AlxGa1-xAs, одна из которых расположена с одной стороны группы проводящих слоев - подложечная, другая - с противоположной стороны - затворная, при этом подложечная группа барьерных слоев выполнена в виде акцепторно-донорной p-i-δn системы барьерных слоев, затворная группа барьерных слоев - в виде донорно-акцепторной δn-i-p системы барьерных слоев, при этом в каждой группе барьерных слоев i-слой выполнен толщиной 0,5-10 нм, p-слой выполнен с уровнем легирования, обеспечивающим высоту потенциальных барьеров 0,4-0,8 ширины запрещенной зоны AlxGa1-xAs, δn-слой выполнен с избыточным уровнем легирования, обеспечивающим разницу поверхностной плотности донорной и акцепторной примеси равной (1-10)×1012 см-2. Технический результат - повышение выходной мощности и коэффициента усиления. 2 з.п. ф-лы, 2 ил, 1 табл.

Изобретение относится к электронной технике

Изобретение относится к электронной технике

Изобретение относится к электронной технике

Изобретение относится к электронной технике

Изобретение относится к электронной технике, а именно к технологии полупроводниковых структур

Изобретение относится к электронной технике

Изобретение относится к электронной технике СВЧ

Изобретение относится к электронной технике

Изобретение относится к электронной технике

Изобретение относится к электронной технике, преимущественно к конструированию мощных интегральных схем СВЧ-диапазона длин волн

 


Наверх