Патенты автора Бухлин Александр Викторович (RU)

Гибридный датчик магнитного поля содержит чувствительный элемент и концентратор магнитного поля, состоящий из двух усеченных ферромагнитных конусов и оболочки из высокотемпературного сверхпроводника. Чувствительный элемент расположен между основаниями конусов малого диаметра, а сверхпроводниковая оболочка образует боковую поверхность гибридного датчика. Оболочка из высокотемпературного сверхпроводника позволяет избавиться от эффекта рассеяния магнитного поля в области чувствительного элемента и образующих ферромагнитного конического концентратора. Благодаря этому достигается максимально возможная концентрация магнитного поля на чувствительном элементе при минимальных геометрических размерах системы. Задачей изобретения является увеличение чувствительности гибридного датчика магнитного поля за счет улучшения характеристик концентратора магнитного поля. 1 ил.
Способ изготовления гибридного датчика магнитного поля, при котором формируется цилиндрическая оболочка из высокотемпературного сверхпроводника, содержащая конусные полости для формирования концентратора магнитного поля. Цилиндрическая сверхпроводниковая оболочка формируется методом запрессовки сверхпроводящего порошка, смешанного с изопропиловым спиртом в качестве связующего вещества, в серебряную оболочку и последующим отжигом. Серебряная оболочка позволяет сохранить структурную целостность сверхпроводниковой цилиндрической оболочки при извлечении из пресс-формы и в процессе отжига, а также повышает качество стенок полости под заливку ферромагнитного концентратора, что положительно сказывается на коэффициенте концентрации магнитного поля. Получившиеся конусные полости заполняются смесью ферритового порошка и клеевой основы. После затвердевания ферритового концентратора в концентратор устанавливается чувствительный элемента через установочное окно в торце сверхпроводниковой оболочки. Задачей изобретения является упрощение технологии изготовления гибридных датчиков и повышение выхода годных изделий за счет раздельного изготовления элементов гибридного датчик без воздействия высокими температурами на чувствительный элемент и ферромагнитный концентратор, а также повышение их чувствительности и надежности.

Изобретение относится к контрольно-измерительной технике и может использоваться для определения координат планово-высотного положения оси трубопровода подземного исполнения, имеющего большие глубины заложения, на участках его переходов через глубоководные водные преграды, а также для контроля пространственного положения оси трубопровода при его прокладке методом наклонно-направленного бурения. Способ включает возбуждение генератором переменного тока, позиционирование оператора над обследуемым трубопроводом и проведение измерений над и вблизи трубопровода индукции переменного магнитного поля, создаваемой током в трубопроводе, измерение расстояния от датчиков до проекции оси трубопровода на дневную поверхность, определение углов поворота датчиков поля вокруг горизонтальных и вертикальной осей трубопровода, получение матрицы поправок, связанных с углами поворота датчиков и их расстоянием относительно оси трубопровода, внесение поправок в матрицы компонент поля и их разностей, обработку результатов измерений и определение технических параметров подземного трубопровода. Сущность изобретения сводится к определению планово-высотного положения оси трубопровода в глобальной системе координат с точностью, применяемой дифференциальной навигационной спутниковой системы, исключая негативное влияние технических возможностей диагностического устройства на формирование данных о высотном положении оси трубопровода. Над трубопроводом в местах измерений высотного положения оси трубопровода вешки перемещают матрицу датчиков магнитного поля поперек оси трубопровода в обе стороны от вешек на расстояние не менее полуторной глубины его заложения, проводят измерение в пространстве вектора индукции переменного магнитного поля, создаваемого током генератора, получают массив точек, имеющих GPS координаты с дифференциальными поправками, определяют в глобальной системе: координаты расположения оси трубопровода в горизонтальной плоскости в точке максимального значения индукции магнитного поля; определяют глубину заложения трубопровода относительно дневной поверхности по графику распределения вектора индукции магнитного поля, которая вычисляется как половина длины хорды, проведенной между точками, расположенными на кривой графика на уровне величины, равной половине от максимального значения индукции магнитного поля, и определяют высотную отметку оси трубопровода, вычитая из высотной отметки грунта над осью трубопровода глубину его заложения; при обработке данных о пространственном положении трубопровода проводят корректировку высотных отметок его оси с учетом данных, полученных при поперечном обследовании трубопровода. 2 ил.

Использование: для обнаружения и оконтуривания участков нарушения целостности трубопровода. Сущность изобретения заключается в том, что способ включает возбуждение в трубопроводе переменного тока путем подключения генератора переменного тока к трубопроводу, измерение над и вблизи трубопровода индукции переменного магнитного поля, создаваемой током в трубопроводе, измерение компонент магнитного поля путем перемещения датчиков вдоль трубопровода, обработку результатов измерений и определение расположения аномалий постоянного и переменного магнитного поля, магнитные моменты и параметры нарушения изоляционного покрытия трубопровода, при этом на обоих концах обследуемого участка подземного трубопровода на расстоянии от его оси, равном более 10 величин глубины заложения трубопровода, формируется электрическая токовая цепь путем установки: в начале участка - электрода заземления, который соединяют проводом с генератором, а генератор с трубопроводом; а на конце участка - электрода для отвода обратного тока, который соединяют проводом с трубопроводом, или соединяют клемму заземления генератора проводом с электродом, установленным на противоположном конце диагностируемого участка трубопровода. Технический результат: обеспечение возможности снижения уровня погрешности. 2 ил., 1 табл.

Изобретение относится к области измерений с поверхности земли длин линейной части подземного трубопровода. Сущность изобретения заключается в том, что получают массив точек, имеющих GPS координаты сантиметрового диапазона точности, проводят селекции массива точек по критерию равенства угла фазы рабочего тока генератора, осуществляют выборку точек из числа оставшихся, имеющих максимальные значения амплитуды рабочего тока генератора, проведят аппроксимации массива точек аналитической кривой, где в качестве математического инструмента используется метод наименьших квадратов, расчитывают коэффициенты трехмерного уравнения координат трубопровода в глобальной системе координат; определяют длины подземной части трубопровода по положению его оси в глобальной системе координат, которое сводится к расчету на компьютере длины отрезка, описываемого аналитическим уравнением. Технический результат – повышение достоверности и точности измерения длин линейной подземной части (ЛПЧ) трубопровода при определении объема продуктов, находящихся в трубопроводе. 4 ил.

Способ относится к бесконтактной магнитометрической диагностике. Способ включает возбуждение переменного магнитного поля в зоне трубопровода, измерение над и вблизи трубопровода индукции переменного магнитного поля, создаваемой током в трубопроводе, измерение расстояния от датчиков до проекции оси трубопровода на дневную поверхность, индицирование величины и направления удаления датчиков от проекции оси трубопровода, на основании чего оператор корректирует путь перемещения вдоль трубопровода, определение углов поворота датчиков поля вокруг горизонтальных и вертикальной осей, получение матрицы поправок, связанных с углами поворота датчиков и их расстоянием относительно оси трубопровода, внесение поправок в матрицы компонент поля и их разностей. Для повышения достоверности и точности диагностического контроля технических параметров подземного трубопровода в независимости от условий его расположения в техническом коридоре или на технологической площадке, при перемещении датчиков магнитного поля над трубопроводом определяют степень фактического влияния на диагностируемый трубопровод магнитных помех от соседних трубопроводов, расположенных в непосредственной близости, для чего перемещают матрицу датчиков магнитного поля как вдоль, так и поперек оси обследуемого трубопровода в обе стороны на расстояние не менее десятикратной глубины его заложения, проводят измерение в пространстве векторов индукции переменного магнитного поля, создаваемых токами в трубопроводах, получают ситуационную картину магнитных полей вблизи диагностируемого трубопровода, проводят расчеты и определяют, при каких фактических величинах токов, глубин трубопроводов и расстояниях между ними рассчитанная ситуационная картина распределения векторов магнитного поля около диагностируемого трубопровода будет соответствовать измеренному распределению, далее вычитают при расчетах токи от соседних трубопроводов при проведении обработки результатов измерений, определении расположений источников аномалий переменного магнитного поля и параметров нарушений изоляции трубопровода. 3 ил.

Изобретение относится к способу получения сверхпроводниковых изделий на основе керамики состава Bi-Pb-Sr-Ca-Cu-O и может быть использовано для изготовления мишеней, предназначенных для получения наноразмерных пленок высокотемпературного сверхпроводника (ВТСП) методом магнетронного напыления

Изобретение относится к сверхпроводниковым приборам, использующим высокочувствительные структуры на базе пленочных высокотемпературных сверхпроводников

Изобретение относится к области неразрушающего, дистанционного контроля

Изобретение относится к электронным устройствам, использующим высокочувствительные системы на базе пленочных высокотемпературных СКВИДов

 


Наверх