Патенты автора Иванов Андрей Владимирович (RU)

Использование: для передающей или приемной антенны летательного аппарата в дециметровом диапазоне длин волн. Сущность изобретения заключается в том, что осуществляют измерение температур на внутренней и наружной поверхности, а также по всей толщине конструкции, путем размещения датчиков в толще ограждения, поступающая информация с которых направляется в банк данных компьютера, где проходит обработку и систематизацию в виде графиков, с использованием которых на поперечном разрезе исследуемого наружного ограждения, построенного в выбранном масштабе и предварительно разбитого на слои в местах размещения датчиков, строится график распределения температур по слоям, согласно изобретения для построения графика распределения температур по слоям в произвольном масштабе изображается толщина стенки исследуемого образца, разбитая на слои в местах установления термопар, параллельно поверхности стенки проводится вертикальная шкала температур, с которой на выделенные слои переносятся точки соответствующих температур, взятых из графика, полученного из банка данных компьютера, вычисляют значения максимально возможной упругости водяных паров Е (Па) по известным температурам, полученных с датчиков, размещенных в толще исследуемого ограждения и графиков температур по слоям, затем на основании полученных данных определяют изменение сопротивления паропроницанию и коэффициента паропроницания по толщине наружного стенового ограждения. Технический результат: обеспечение возможности определения изменений сопротивления паропроницанию и коэффициента паропроницания по толщине наружного ограждения при проведении теплофизических исследований в натурных условиях. 2 ил.

Изобретение относится к строительству и может быть использовано для соединений деревянных конструкций. Техническим результатом изобретения является предотвращение появления коррозионного износа дерева и металла за счет исключения влияния температурно-влажностного режима на стык металл-дерево. Нагельное соединение деревянных элементов строительных конструкций включает соединяемые деревянные элементы, накладки и цилиндрические стальные нагели, установленные в предварительно просверленные отверстия. Отверстия, с вставленными в них стальными нагелями, с обеих сторон закрыты деревянными заглушками, установленными заподлицо с поверхностью накладок, при этом диаметр отверстия под заглушки имеет больший размер, чем диаметр отверстия под нагель. 2 ил.

Изобретение относится к составам, предназначенным для борьбы с пылеобразованием на карьерах, автодорогах и предотвращения пыления различных мелкозернистых материалов (зола, уголь, шлаки, калийные и другие удобрения и т.п.). Может применяться для пылеподавления в горнорудной, угольной, строительной и других отраслях промышленности. Пылеподавитель предназначен для борьбы с пылеобразованием на карьерах, автодорогах и предотвращения пыления различных мелкозернистых материалов (зола, уголь, шлаки, калийные и другие удобрения, и т.п.). Состав для пылеподавления включает поливинилацетат, который представляет собой сополимер винилацетата с участием этилена, акриловой кислоты, пирролидона, акрилата, винилового спирта, акриламида, дигалоидэтана либо сочетания вышеперечисленного. Дополнительно содержит полиэтиленгликоль молекулярной массой 400 г/моль и воду при следующем соотношении компонентов, мас.%: полиэтиленгликоль молекулярной массой 400 г/моль - 0,95-1; поливинилацетат - 0,12 – 0,24; вода - остальное. Использование предлагаемого состава для пылеподавления позволяет снизить пыление мелкозернистых материалов (строительные материалы, зола, уголь, шлаки, удобрения и т.п.) до 98% по сравнению с необработанными материалами. За счет высокой пылеподавляющей способности и образования на поверхности полимерной пленки исключается возможность повторного пыления. Изобретение обеспечивает повышение пылеподавляющей способности состава и долговременный эффект закрепления поверхности. 2 ил., 2 пр., 2 табл.

Изобретение относится к средствам запуска полезной нагрузки (ПН). Ступень содержит приборный отсек (1), баки первого (2) и второго (3) компонентов топлива. В двигательном отсеке (4) ниже торового бака (3) размещена двигательная установка, камеры (5) которой расположены равномерно по окружности днища. При наличии рулевого ракетного двигателя его камеры (6) расположены аналогично. Отсек (7) ПН (8) образован в основном поверхностями баков, и в нем имеется устройство перемещения (выталкивания) ПН вдоль оси (9) ступени. Отсек ПН закрыт люком (10). Для посадки используются выдвижные или раскладные посадочные опоры (11). Могут также быть предусмотрены тормозные парашюты, размещенные в отсеках (12). Технический результат состоит в повышении конструктивного совершенства и улучшении массово-габаритных характеристик многоразовой ступени ракеты-носителя. 7 з.п. ф-лы, 4 ил.
Изобретение относится к производству вооружения и может быть использовано при изготовлении снарядов, в частности пуль из вольфрамового сплава. Из вольфрамового сплава на заготовке нарезают две кольцевые канавки, на поверхность канавок наносят гальваническое никелевое покрытие. Из медного прутка предварительно изготавливают два кольца таким образом, чтобы каждое кольцо плотно входило в кольцевую канавку, выполненную на заготовке из вольфрамового сплава, а наружный диаметр каждого кольца был больше диаметра заготовки. На внутреннюю поверхность половинок колец наносят гальваническое никелевое покрытие. В канавки устанавливают медные кольца, прижимают их к заготовке и проводят пайку колец. Наружную поверхность припаянных колец далее точат так, чтобы их диаметр был больше диаметра заготовки из вольфрамового сплава, после чего выполняют окончательное точение заготовки для изготовления пули. Изобретение позволяет повысить кучность при стрельбе, дальность полета снарядов и срок службы оружейного ствола при многократной стрельбе за счет обеспечения целостности внутренней поверхности канала ствола. 2 пр.

Изобретение относится к области ракетостроения и может быть использовано в жидкостных ракетных двигателях (ЖРД) и энергоустановках различного назначения. Криогенный жидкостный ракетный двигатель комбинированной схемы содержит камеру с головкой и трактом охлаждения, турбонасосный агрегат окислителя, состоящий из насоса окислителя и турбины, турбонасосный агрегат горючего, состоящий из насоса горючего и турбины, вход турбины которого соединен с выходом тракта охлаждения камеры, а ее выход соединен с входом головки камеры, магистрали окислителя и горючего высокого давления, при этом на входе турбины турбонасосного агрегата окислителя установлен газогенератор, вырабатывающий рабочий газ для привода турбины, причем вход газогенератора соединен с магистралями окислителя и горючего высокого давления. Рассмотрен второй вариант криогенного ЖРД комбинированной схемы, содержащий камеру с головкой и трактом охлаждения, турбонасосный агрегат окислителя, состоящий из насоса окислителя и турбины, турбонасосный агрегат горючего, состоящий из насоса горючего и турбины, магистрали окислителя и горючего высокого давления, при этом на входе турбины турбонасосного агрегата окислителя установлен газогенератор, вырабатывающий рабочий газ для привода турбины, причем вход газогенератора соединен с магистралями окислителя и горючего высокого давления, на выходе турбины турбонасосного агрегата окислителя установлен теплообменник, вход которого соединен с выходом тракта охлаждения камеры, а выход - с входом турбины турбонасосного агрегата горючего. Изобретение обеспечивает повышение давления в камере сгорания, упрощение форсирования и регулирования двигателя, повышение экономичности, снижение массы и габаритов. 2 н. и 6 з.п. ф-лы, 8 ил.

Изобретение относится к способам получения неразъемных сварных соединений изделий из разнородных металлических материалов, в частности к способу диффузионной сварки изделий из стали и алюминия. На очищенную от окислов поверхность стальной детали наносят гальваническое никелевое покрытие, после чего осуществляют термообработку стальной детали при температуре 700-710°С и последующую полировку никелевой поверхности. Время достижения указанной температуры термообработки составляет 25-30 минут, дальнейшую выдержку детали осуществляют в течение 40-45 минут. Проводят подготовку поверхности алюминиевой детали. Осуществляют нагрев свариваемых поверхностей, их сдавливание с заданным усилием и выдержку в этом состоянии до образования взаимной диффузии между свариваемыми металлами. Технический результат заключается в получении высокой прочности сварных соединений. 4 з.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к ракетно-космической технике, а более конкретно к ракетоносителям. Ракета-носитель с универсальной верхней ступенью состоит по меньшей мере из двух ступеней. Верхняя ступень содержит двигательную установку с жидкостным ракетным двигателем/двигателями, работающим на двухкомпонентном топливе. Двигательная установка выполняет функции как верхней ступени ракеты-носителя, так и разгонного блока. Она состоит из маршевого и рулевого жидкостных ракетных двигателей. Число включений рулевого двигателя может превышать число включений маршевого двигателя. Система питания рулевого двигателя может быть вытеснительной, турбинной, с высокооборотными электроприводами, с комбинированным приводом – сочетанием турбинного с высокооборотным электродвигателем. Достигается повышение надежности. 2 н. и 12 з.п. ф-лы, 14 ил.

Изобретение относится к средствам исследования пылящих поверхностей и может быть использовано для моделирования аэродинамического воздействия на материалы, способные к пылению, а также в целях проведения испытания различных средств и способов пылеподавления в условиях, моделирующих реальные. Аэродинамическая труба для исследования пылящих поверхностей, включающая вытяжной вентилятор, патрубок подачи воздуха, столик для испытуемых образцов, средство измерения концентрации пыли, дополнительно снабжена патрубком вытяжки воздуха, при этом оба патрубка выполнены в форме трубы круглого сечения на одной оси, которые опираются на колесные опоры со стопором, и подвижно соединены между собой рамой через подвижные направляющие, на них установлены крепления для герметичной фиксации друг с другом, на патрубке подачи воздуха с возможностью съема закреплены съемный приточный вентилятор и метеометр, а внутри него установлены детурбулизирующие решетки и съемные регулируемые дефлекторы, при этом в патрубке выполнено отверстие, в которое установлено заборное устройство фоновой пыли, которое подключено к пылемеру, на патрубке вытяжки воздуха с возможностью съема закреплен вытяжной вентилятор и пылемер, в патрубке выполнено отверстие, в которое установлено заборное устройство измеряемой пыли, которое подключено к пылемеру, посередине между патрубками жестко закреплен на регулируемых опорах столик для испытуемых образцов, под ним жестко закреплены к раме весы с возможностью блокировки зажимами. Техническим результатом является повышение эффективности определения параметров выноса пылевидных частиц. 2 ил..

Изобретение относится к области ракетно-космической техники, а более конкретно к ступеням ракеты-носителя(РН). Многоразовая ступень РН содержит приборный отсек, бак первого компонента топлива, межбаковый отсек и объединенную двигательную установку. Установка состоит из жидкостного ракетного двигателя (ЖРД), расположенного в межбаковом отсеке, и рулевого ЖРД. Рулевой ЖРД имеет менее трех камер для управления вектором тяги, стабилизации, торможения и посадки ступени. Бак второго компонента топлива расположен ниже бака первого компонента топлива. Отсек полезной нагрузки образован цилиндрической оболочкой, соединенной с нижней ступенью РН и днищем бака второго компонента, на котором закреплена полезная нагрузка. На днище бака второго компонента установлены выдвижные или раскладные посадочные опоры. Достигается улучшение массово-габаритных характеристик. 2 н. и 4 з.п. ф-лы, 8 ил.

Изобретение относится к области ракетно-космической техники, а более конкретно к первой ступени ракеты-носителя. Многоразовая первая ступень ракеты-носителя (РН) содержит носовой отсек с обтекателем, топливный отсек и хвостовой отсек, содержащий комбинированную силовую установку (КСУ). КСУ состоит из прямоточного воздушно-реактивного двигателя (ПВРД) и жидкостного ракетного двигателя (ЖРД). ПВРД имеет укороченное центральное тело штыревого сопла. Во внутренней полости кольцевой камеры сгорания расположены коллектор горючего, стабилизатор пламени и теплообменник. ЖРД расположен во внутренней полости укороченного центрального тела штыревого сопла. К наружному корпусу ПВРД присоединена несущая аэродинамическая поверхность, представляющая собой неподвижное стреловидное крыло, на законцовках и консольных частях которого размещены управляющие аэродинамические поверхности. Достигается улучшение массово-габаритных характеристик. 1 з.п. ф-лы, 8 ил.

Изобретение относится к области ракетостроения и может быть использовано в жидкостных ракетных двигателях (ЖРД), ядерных ракетных двигателях (ЯРД) и энергоустановках различного назначения. Двигательная установка, содержащая баки компонентов топлива, ракетный двигатель с насосной подачей компонентов топлива, систему управления, при этом привод насосов двигателя электрический, с электроприводами по линии каждого из компонентов топлива, а в состав двигательной установки входит система электропитания и управления, содержащая электронный блок управления электропитанием и регулирования, а также накопительное устройство, например, аккумуляторная батарея и/или суперконденсатор. Изобретение обеспечивает кавитационную устойчивость системы питания, многократное включение ДУ, повышение надежности управления вектором тяги. 9 з.п. ф-лы, 11 ил.

Изобретение относится к ракетно-космической техники и может быть использовано для создания многоразовых ракетных комплексов. Комбинированная силовая установка многоразовой первой ступени ракеты-носителя содержит прямоточный воздушно-реактивный двигатель (ПВРД) состоящий из внутреннего и наружного корпуса установленных коаксиально и соединенных между собой с помощью пилонов, образующих профилированный канал осесимметричного воздухозаборника, установленного во входной части профилированного канала, коллектора горючего с форсунками и стабилизатора пламени, установленных во внутренней полости кольцевой камеры сгорания, образованной внутренним и наружным корпусом, и в выходной части которой установлено укороченное центральное тело штыревого сопла ПВРД, а подача горючего к форсункам осуществляется с помощью турбонасосного агрегата, включающего в себя центробежный насос, вход которого соединен с выходом бака горючего, и турбину, расположенную на одном валу с центробежным насосом, выход которой соединен с коллектором горючего, причем во внутренней полости кольцевой камеры сгорания расположено теплообменное устройство, вход которого соединен с выходом центробежного насоса, а выход - с входом турбины, жидкостный ракетный двигатель (ЖРД), расположенный во внутренней полости центрального тела штыревого сопла ПВРД. Неохлаждаемые огневые стенки кольцевой камеры сгорания и укороченное центральное тело штыревого сопла выполнены из углерод-углеродного композитного материала (УУКМ). Изобретение обеспечивает улучшение массово-габаритных характеристик летательного аппарата за счет использования комбинированной силовой установки и в качестве окислителя - кислорода воздуха на начальном участке полета. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области ракетостроения и может быть использовано в жидкостных ракетных двигателях, преимущественно в двигателях с большой и средней тягой. Бустерный турбонасосный агрегат жидкостного ракетного двигателя содержит осевой насос, корпус и вал, на который установлены осевое колесо насоса и подшипники, согласно изобретению подшипники установлены между осевыми упорами корпуса, а между подшипниками установлена осевая пружина. Изобретение обеспечивает повышение его ресурса и надежности за счет снижения осевой нагрузки, действующей на подшипники. 8 ил.

Изобретение относится к области ракетного двигателестроения и может быть использовано при проектировании жидкостных ракетных двигателей (ЖРД). Жидкостный ракетный двигатель содержит камеру сгорания с трактом охлаждения и форсуночной головкой, генератор синтез-газа, турбонасосный агрегат, включающий в себя насос окислителя, насос горючего, насос воды и турбину, вход которой сообщается с выходом генератора синтез-газа, а выход с форсуночной головкой, при этом охлаждение камеры сгорания осуществляется горючим, в варианте исполнения охлаждение камеры сгорания осуществляется водой. Изобретение обеспечивает повышение энергетических характеристик и надежности ЖРД. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области насосостроения и может быть использовано в том числе в насосах авиационных и жидкостных ракетных двигателей. Лопаточный насос содержит корпус (1), подвод (2), рабочее колесо (4) с покрывным диском (7), бесконтактное уплотнение (8), расположенное на покрывном диске (7), кольцевую полость (9) на выходе из уплотнения (8). Кольцевая полость (9) соединена с подводом (2) насоса перепускными каналами (10), выполненными в подводе (2), и выполнена со стороны подвода (2), непосредственно в его теле. Изобретение направлено на повышение надежности и упрощение конструкции лопаточного насоса. 4 з.п. ф-лы, 3 ил.

Изобретение относится к области ракетостроения и может быть использовано в жидкостных ракетных двигателях (ЖРД), преимущественно кислородно-метановых и кислородно-водородных. Бустерный турбонасосный агрегат ЖРД, содержащий насос, турбину, подшипник турбины, подшипник насоса, разделительную полость между насосом и турбиной, ограниченную со стороны турбины уплотнением вала, подшипник турбины установлен со стороны насоса за разделительной, согласно изобретению разделительная полость размещена между подшипником турбины и уплотнением вала, со стороны турбины, в разделительной полости установлен разгрузочный диск, на наружном диаметре которого выполнено уплотнение, а разделительная полость в периферийной части соединена отводящими каналами с отводом насоса. Изобретение обеспечивает уменьшение потерь мощности, затрачиваемой на разделение насоса и турбины, повышение экономичности системы питания, снижение термических деформаций рабочего колеса газовой турбины, обеспечение снижения усилия, действующего на подшипники от осевых сил. 2 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к области ракетостроения и может быть использовано в жидкостных ракетных двигателях (ЖРД), ядерных ракетных двигателях (ЯРД) и энергоустановках различного назначения. Жидкостный ракетный двигатель состоит из камеры 1, турбонасосного агрегата (ТНА) 2, бустерных насосных агрегатов 3 (БНА1) и 4 (БНА2), установленных на линии каждого из компонентов топлива. Бустерные насосные агрегаты приводятся во вращение электроприводами 5 и 6. Под электроприводом понимается совокупность электродвигателя, регулируемого по частоте вращения, и электрической системы управления им. Электрическая система управления электродвигателем может входить как в состав ЖРД, так и летательного аппарата. Система электропитания входит в состав летательного аппарата. Для обеспечения для подзарядки системы электропитания по линии высокого давления одного или обоих компонентов топлива установлен турбоэлектрогенератор/турбоэлектрогенераторы 9 и 10, приводимый/приводимые во вращение гидротурбинами. Для обеспечения разделения насосов БНА1 и БНА2 с насосами ТНА, например, для предстартового захолаживания, между выходами из БНА1 и БНА2 и входами соответствующих насосов ТНА установлены клапаны 7 и 8, соответственно. Изобретение обеспечивает упрощение конструкции, повышение надежности за счет минимизации количества агрегатов в составе двигателя, повышение диапазона регулирования ЖРД за счет обеспечения оптимальных параметров на выходе из бустерных насосных агрегатов - входах в насосы ТНА независимо от режима работы ТНА в составе двигателя. 7 з.п. ф-лы, 6 ил.

Изобретение относится к медицинской технике и может быть использовано для оперативного лечения больных с полостными формами хроническим остеомиелита длинных костей, а также для замещения остаточных полостей после онкологических операций на костях. Устройство для забора остеоаутотрансплантата из крыла подвздошной кости содержит направитель, два поочередно используемых во время взятия костного аутотрансплантата трубчатых корпуса с равными диаметрами, наружные диаметры которых выполнены под внутренний диаметр направителя, оба корпуса с нерабочих концов имеют сквозные отверстия для ключа-хвостовика. Первый корпус выполнен с режущей частью и линейной шкалой для оценки погружения в костную ткань. Режущая часть первого корпуса выполнена в виде цилиндрической фрезы с зубьями. Второй корпус выполняет роль извлекателя и снабжен с внутренней стороны двумя диаметрально противоположными направляющими-лопастями, расположенными по спирали под внедрение по часовой стрелке, заостренными под углом 60° от рабочего конца к верхушке, перпендикулярными внутренней стенке извлекателя и высотой не более 1/5 внутреннего диаметра. Использование изобретения позволяет обеспечить максимальное сохранение послойной структуры костного аутотрансплантата за счет снижения его деформации в процессе извлечения, получение пластического материала с неизмененными биомеханическими свойствами, точно заданными параметрами объема и округлой формой поперечного сечения. 3 ил.

Изобретение относится к области технологии углеграфитовых материалов. Для получения графитовой фольги с улучшенными характеристиками герметичности сначала получают интеркалированный графит, который затем нагревают в режиме термоудара с получением полупродукта, содержащего терморасширенный графит и аморфный углерод. Нагрев проводят при температурах, обеспечивающих максимальное значение отношения ID/IG в зависимости от глубины окисления, где IG и ID - пики интенсивности рассеянного излучения в области частот 1500-1630 см-1 и 1305-1395 см-1 соответственно, для графита и аморфного углерода, измеренные методом рамановской спектроскопии в зависимости от глубины окисления упомянутого интеркалированного графита. Максимальная величина соотношения ID/IG для каждой глубины окисления больше или равна 0,05. Указанный полупродукт подвергают сжатию с получением целевого продукта – графитовой фольги. Листовой материал, представляющий собой ламинат, выполнен на основе данной фольги, и содержит металлическую фольгу, ленту или сетку. Из указанной фольги получают фланцевое или сальниковое уплотнение. Группа изобретений позволяет улучшить герметичность. 4 н. и 11 з.п. ф-лы, 3 ил., 1 табл., 3 пр.

Изобретение относится к области получения низкоплотных прочных материалов на основе терморасширенного графита (ТРГ), которые могут использоваться в качестве распределителей тепла, в т.ч. в системах потолочного и стенового отопления и кондиционирования. Углеродная теплораспределяющая плита для изготовления потолочных и настенных систем нагрева и кондиционирования выполнена из сжатых частиц терморасширенного графита со связующим. В качестве связующего она содержит частицы аморфного графита в количествах от 0,3 до 30,0 масс.%. Микроструктура упомянутых сжатых частиц терморасширенного графита со связующим представляет собой пачки упорядоченных графитовых слоев со слоем аморфного углерода на поверхности упомянутых графитовых слоев, при этом плотность плиты составляет от 0,05 до 0,3 г/см3. Плита обладает теплопроводностью в направлении, параллельном поверхности плиты, не менее 1,6 Вт/м⋅К и коэффициентом анизотропии теплопроводности не менее 1,6. Техническим результатом является улучшение потребительских свойств плит, в частности прочности на изгиб. 8 з.п. ф-лы, 1 ил., 4 пр.

Изобретение относится к антенной технике, а именно к спиральным антеннам, работающим в непрерывном диапазоне ультравысоких (УВЧ) и сверхвысоких (СВЧ) частот в составе антенных систем различного назначения, в частности в системах пеленгации и сопровождения. Антенна содержит комбинированную двухзаходную спираль, состоящую из соединенных плоской и полусферической спиралей, диэлектрический корпус, внутри которого размещены согласующий симметрирующий трансформатор и металлические рефлекторы плоской и полусферической спиралей с установленными на них кольцами из поглощающих материалов. При этом на обратной стороне рефлектора плоской спирали установлено обратное кольцо из поглощающего материала, обращенное рабочей поверхностью к рефлектору полусферической спирали. Согласно предлагаемому техническому решению внутри диэлектрического корпуса между поглощающим кольцом на рефлекторе полусферической спирали и обратным поглощающим кольцом на обратной стороне рефлектора плоской спирали размещено кольцо из диэлектрического материала. Сверхширокополосная спиральная антенна работает в непрерывном диапазоне УВЧ и СВЧ с перекрытием 20:1. Осцилляции КСВН и КУ существенно сглаживаются, а уровень заднего излучения уменьшается приблизительно вдвое. Это позволяет расширить рабочий диапазон пеленгатора в область более низких частот. 1 ил.

Изобретение относится к области машиностроения и может быть использовано в области ракетостроения, в турбонасосных агрегатах жидкостных ракетных двигателей и ядерных ракетных двигателей. Турбонасосный агрегат содержит насос и турбину, вал, опирающийся на подшипники, установленные на валу рабочее колесо турбины и крыльчатку, корпус и разделительную полость с уплотнениями вала со стороны полости насоса и полости перед колесом турбины. Разделительная полость каналом в корпусе соединена с буферной полостью над податливой оболочкой, образующей совместно с наружной поверхностью рабочего колеса турбины уплотнение турбины. Изобретение направлено на повышение надежности и коэффициента полезного действия турбонасосного агрегата. 7 з.п. ф-лы, 8 ил.

Изобретение относится к медицинскому оборудованию. Устройство для доставки растворов в виде аэрозоля в анатомические полости включает корпус, внутри которого расположена удлинительная трубка, на одном конце которой установлен хвостовик, выполненный с возможностью соединения с магистралью высокого давления для подачи раствора в устройство. Другой конец удлинительной трубки сообщен с каналом гильзы, и на нем установлен клапан, состоящий из пружины с фиксированной на ее проксимальном конце пробкой, выполненной из эластичного материала, способного обеспечить герметичность. Канал гильзы сообщен с каналом форсунки, в котором расположен завихритель, состоящий из металлического цилиндра с грибовидным основанием на проксимальном крае, предназначенном для упора пружины, и двумя параллельными пазами в форме усеченных параллелепипедов. Завихритель имеет возможность преобразования ламинарного потока раствора в два встречно направленных турбулентных потока с формированием аэрозоля после встречно-касательного их столкновения. Форсунка на торце имеет сопло для выхода аэрозоля. Технический результат состоит в предотвращении попадания в полость капель раствора при снижении давления ниже необходимого для получения аэрозоля. 1 ил.

Изобретение относится к получению сорбентов на основе термически расширенного графита, обладающих ферримагнитными свойствами. Способ получения сорбента на основе термически расширенного графита (ТРГ), модифицированного магнитной ферритной фазой, включает пропитку интеркалированных графитовых частиц водным раствором солей, содержащим соль трехвалентного железа и соль двухвалентного металла при содержании каждой из упомянутых солей в количестве от 2,5 до 25 мас. %. Упомянутые соли выбраны из группы солей, способных к разложению в интервале температур от 500 до 1200°C до оксида железа (III) и оксида металла (II). Затем осуществляют отделение пропитанных интеркалированных графитовых частиц, сушку твердой фазы до сыпучего состояния и её термическую обработку при температуре 500-1200°C. Изобретение позволяет получить сорбент с улучшенными эксплуатационными характеристиками за счет равномерного распределения магнитной фазы по поверхности сорбента, увеличения содержания магнитной фазы в ТРГ и повышения его магнитных свойств, а также упрощение технологии путем проведения синтеза в воздушной атмосфере в отсутствии восстановителя. 2 н. и 5 з.п. ф-лы, 2 табл.

Изобретение относится к области плазменной техники, а именно к ионным системам, и может быть использовано в области ракетно-космической техники, при разработке, изготовлении и сборке ионно-оптической системы (ИОС) ионных двигателей (ИД), ионных пушек и ускорителей. Технический результат- : упрощение обеспечения соосности между отверстиями в электродах при сборке ИОС. В способе перфорации отверстий в электродах ионно-оптической системы, основанном на формировании ионных пучков с последующим их воздействием на обрабатываемую поверхность электрода, перед воздействием ионных пучков на обрабатываемую поверхность собирают ионно-оптическую систему, включая эмиссионный электрод, затем формируют разряд, создавая поток ионов, и направляют его через отверстия эмиссионного электрода на обрабатываемую поверхность электрода, где ионы распыляют материал электрода в точках воздействия. 4 ил.

Изобретение относится к области определения теплофизических характеристик ограждающих конструкций и может быть использовано в строительстве для оценки теплофизических свойств по результатам испытаний в натурных условиях. Способ определения внутри наружного стенового ограждения, выполненного из кирпича, зон, характеризующихся квазистационарными условиями теплопередачи при натурных экспериментальных исследованиях в зимний период, включает измерение температур внутренней и наружной поверхностей, а также по всей толщине конструкций путем размещения датчиков в толщине ограждения. При этом в течение суток при наличии градиента (t) наружного воздуха по показаниям датчиков моделируют процесс появления в толще ограждения зон с квазистационарными условиями теплопередачи с использованием направления вектора температурного градиента. Затем учитывают по изменениям температур на поверхности и в толщине ограждения характер колебаний тепловых потоков от наружного слоя ограждения во внутренние слои, определяя возникновение в толщине ограждения зон, обеспечивающих требуемые условия квазистационарной теплопередачи. Техническим результатом является расширение диапазона определения теплофизических характеристик ограждающих конструкций. 8 ил.

Изобретение может быть использовано в производстве уплотнительных материалов, низкоплотных теплораспределяющих материалов и сорбентов. Сначала частицы гидролизованного нитрата графита смешивают с гранулированными частицами карбамида в количестве от 5 до 20 масс. %. Полученную смесь нагревают до температуры термического расширения – не ниже 1000°С и выдерживают при этой температуре. Полученный терморасширенный графит имеет насыпную плотность 1-5 г/л и рН от 7 до 8. Изобретение позволяет уменьшить трудоёмкость процесса и количество вредных газовых выбросов в атмосферу. 2 з.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к области плазменной техники, а именно к ионным системам, и может быть использовано в области ракетно-космической техники, при разработке, изготовлении и сборке ионно-оптической системы (ИОС) ионных двигателей (ИД). Технический результат - упрощение обеспечения соосности между отверстиями в электродах при сборке ИОС; обеспечение регулировки зазора между электродами при сборке ИОС. В способе изготовления и сборки ионно-оптической системы, основанном на обеспечении осесимметричности отверстий в электродах и зазора между этими электродами, согласно изобретению: изготовление отверстий осуществляют от базы, представляющей собой не менее двух базовых отверстий, выполненной в каждом из электродов; базу образуют из не менее двух неравномерно расположенных отверстий; обработку отверстий в электродах выполняют на станке с числовым программным управлением; обработку отверстий в электродах выполняют на станке с числовым программным управлением по одной и той же программе; отверстия в электродах выполняют с помощью электроэрозионной обработки; после получения отверстий в электродах выполняют их электрополировку; соосность отверстий между электродами обеспечивают настройкой соосности базовых отверстий; настройку зазора обеспечивают доработкой или подбором регулировочных шайб, при этом электроды опирают не менее чем на три элемента, представляющих собой сочетание керамических изоляторов и регулировочных шайб. 3 н. и 8 з.п. ф-лы, 5 ил.

Изобретение относится к средствам экологической защиты окружающей среды, именно к устройствам пылеподавления, может быть использовано для обеспыливания, орошения площадных источников пылевыделения, а также для обеспыливания поступающего с источника запыленного воздуха, где требуется применение систем пылеподавления с возможностью обработки значительных площадей. Комплекс пылеподавления площадных источников, включающий транспортное средство, на котором установлены аэрозольная пушка-туманообразователь с устройством наведения, компрессорная и насосная станции, водяная цистерна, генератор электрического тока, блок управления и контроля, при этом в качестве транспортного средства используется железнодорожная платформа, движущаяся по рельсовому пути вдоль пылящего массива, на рельсовом пути напротив границ раздела участков массива размещены пассивные радиочастотные метки, а на платформе установлены считывающее метки устройство и беспроводное устройство беспроводной передачи данных для получения и обработки данных производственного мониторинга и дистанционного автоматического управления. Использование комплекса пылеподавления площадных источников позволит полностью автоматизировать процесс пылеподавления, производить обеспыливание оперативно, а также увеличить массу транспортируемого запаса воды для работы аэрозольной пушки. 1 ил.

Изобретение относится к области электроракетных двигателей (ЭРД). В ЭРД, содержащем разрядную камеру с соплом-анодом, трубопровод подачи рабочего тела, катод, обмотку электромагнитов, согласно изобретению на всей внутренней поверхности разрядной камеры в качестве зашиты от воздействия ионизирующего излучения высокотемпературной плазмы установлены фотоэлектрические и термоэлектрические преобразователи, вырабатывающие электродвижущую силу (ЭДС), причем термоэлектрические преобразователи расположены между корпусом разрядной камеры и фотоэлектрическими преобразователями. Помимо того согласно изобретению внутренняя часть разрядной камеры выполнена из прозрачного диэлектрического материала, снаружи которого расположена зеркальная поверхность с отражающим эффектом внутрь разрядной камеры, а поверх зеркальной поверхности установлены термоэлектрические преобразователи, вырабатывающие ЭДС. Техническим результатом, достигаемым изобретением, является повышение защиты стенок разрядной камеры и обмотки электромагнитов от воздействия тепловых потоков ионизирующего излучения. 2 н.п. ф-лы, 2 ил.

Изобретение относится к средствам пылеподавления и может быть использовано для обеспыливания, орошения сыпучих материалов при конвейерной транспортировке в пунктах пересыпа промышленных и гражданских объектов. Предложена система автоматизированного пылеподавления, включающая блок управления, источник высокого давления, емкости с увлажняющей жидкостью, водяные магистрали, цепи управления и контроля. При этом система дополнительно содержит компрессорную станцию, магистрали подачи сжатого воздуха и пневмогидравлические форсунки тонкого распыления жидкости, оснащенные системой кабельного обогрева, установленные в бункере пылеподавления в начале ленты конвейера. Также система содержит запорные электромагнитные клапаны для включения/отключения форсунок и регулировочные электромагнитные клапаны для регулировки расхода жидкости и сжатого воздуха в форсунках, управляемые через релейный блок приемно-контрольным прибором, оснащенным сетевым контроллером, установленным в виде единого блока управления на раме конвейера в зоне визуального наблюдения работы форсунок для обеспечения возможности ручного управления. Кроме того, система снабжена линейным активным ИК-датчиком, приемное и передающее устройства которого установлены по обе стороны выше уровня конвейерной ленты перед бункером пылеподавления для определения наличия/отсутствия транспортируемого материала на ленте, сигнал которого принимается и обрабатывается приемно-контрольным прибором, который посредством релейного блока при сигнале «Конвейер пуст» выключает запорные электромагнитные клапаны и систему кабельного обогрева, а при сигналах «Конвейер загружен», «Запылен», «Неисправен» включает их. Также система снабжена стационарными метеометром и пылемером, установленными перед и после бункера соответственно по направлению движения транспортируемого материала, данные с которых поступают и обрабатываются в ЭВМ в пульте диспетчеризации, далее через сетевой контроллер передаются на приемно-контрольный прибор, который посредством релейного блока автоматически корректирует работу электромагнитных клапанов и системы кабельного обогрева. Предложенная система обеспечивает включение/отключение форсунок в зависимости от наличия или отсутствия транспортируемого материала на ленте конвейера, регулировку расходов жидкости и сжатого воздуха, подаваемых к форсункам с учетом параметров окружающего воздуха в автоматическом и ручном режимах. 1 з.п. ф-лы, 2 ил.

Предлагаемое изобретение относится к области турбомашиностроения, а именно к высокооборотным высоконапорным центробежным насосам, и может быть использовано в области ракетостроения, в турбонасосных агрегатах (ТНА) жидкостных ракетных двигателей (ЖРД). В предлагаемом изобретении в уплотнении вала турбонасосного агрегата, содержащем импеллер, расположенный между насосом и турбиной, установленный на валу, согласно изобретению гладкая сторона импеллера соединена с лопаточной стороной импеллера с помощью перепускных отверстий, выполненных в его диске; отверстия, соединяющие гладкую и лопаточную стороны импеллера, смещены от оси симметрии межлопаточного канала по направлению вращения ротора; в корпусе насоса между гладкой стороной импеллера и насосом выполнены ребра; между лопаточной стороной импеллера и турбиной выполнено дополнительное уплотнение; в корпусе турбины между турбиной и лопаточной стороной импеллера выполнены перепускные отверстия с выходом к лопаточной стороне импеллера; в корпусе между гладкой стороной импеллера и насосом выполнены ребра. Достигается устранение вскипания жидкости в уплотнении, минимизация утечек из насоса в турбину при захолаживании. 2 н. и 4 з.п. ф-лы, 5 ил.

Изобретение относится к области электроракетных двигателей и стендов для их испытаний. В способе испытания электроракетных двигателей в вакуумной камере, основанном на том, что истекающее рабочее тело затормаживают на защитной мишени, согласно изобретению, энергию истекающего рабочего тела в виде ионизирующего излучения высокотемпературной плазмы преобразуют в электрическую энергию, которую выводят за пределы вакуумной камеры для полезного использования. Способ осуществляется с помощью стенда, содержащего вакуумную камеру, системы питания и управления, защитную мишень, согласно изобретению, на защитной мишени или вместо нее установлен фотоэлектрический и/или термоэлектрический преобразователь, вырабатывающий электродвижущую силу. Техническим результатом изобретения является повышение эффективности зашиты внутренних стенок и оборудования вакуумной камеры от воздействия ионизирующего излучения высокотемпературной плазмы, снижение расхода охладителя мишени, используемого во время испытаний, повышение надежности работы испытательного стенда для испытаний ЭРД. 2 н.п. ф-лы, 1 ил.

Изобретение относится к энергетическим установкам, производящим пар высоких параметров, получаемый за счет энергии, выделяемой при сгорании природного газа или сжиженного природного газа в кислороде. Смесительная головка метано-кислородного парогенератора содержит струйные форсунки, запальное устройство, корпус и огневое днище. Смесительная головка имеет два каскада форсунок горючего, находящиеся на разных радиальных расстояниях, при этом форсунки горючего первого каскада выполнены таким образом, что пересечение их осей с продольной осью форсунки окислителя находится от огневого днища на расстоянии 5÷7 выходных диаметров форсунки окислителя, а форсунки горючего второго каскада - от огневого днища на расстоянии 10÷15 выходных диаметров форсунки окислителя. Изобретение позволяет повысить эффективность горения, ресурс работы смесительной головки и парогенератора в целом. 4 ил.

Изобретение относится к области машиностроения и предназначено для проведения испытаний турбин. Испытания паровых и газовых турбин энергетических и энергодвигательных установок на автономных стендах являются эффективным средством опережающей отработки новых технических решений, позволяющим сократить объем, стоимость и общие сроки работ по созданию новых энергоустановок. Технической задачей, решаемой предлагаемым изобретением, является исключение необходимости удаления отработавшей в гидротормозе во время испытаний рабочей жидкости; снижение периодичности регламентных работ с гидротормозом; создание возможности изменения характеристик испытываемой турбины в широком диапазоне во время проведения испытаний. Способ осуществляется с помощью стенда, содержащего испытываемую турбину с системой подачи рабочего тела, гидротормоз с трубопроводами подачи и отведения рабочей жидкости, в котором согласно изобретению используется емкость с системой заправки рабочей жидкостью, всасывающую и нагнетательную магистрали жидкостного нагрузочного насоса с вмонтированной в них системой датчиков, отградуированных на показания мощности испытываемой турбины, при этом в нагнетательной магистрали установлено дросселирующее устройство и/или пакет дросселирующих устройств, а в качестве гидротормоза используется жидкостный нагрузочный насос, вал которого кинематически связан с испытываемой турбиной, причем рабочая жидкость в жидкостный нагрузочный насос подается по замкнутому циклу с возможностью ее частичного сброса и подвода в контур во время проведения испытаний. 2 н. и 4 з.п. ф-лы, 1 ил.

Изобретение относится к области электротехники и может быть использовано в зарядных устройствах литий-ионных батарей. Технический результат - сокращение времени заряда и увеличение времени разряда батареи. Система управления аккумуляторной батареей содержит блок общего управления и блоки управления каждой ячейкой из множества ячеек аккумуляторной батареи. Каждой ячейкой множества управляет собственный блок, содержащий микроконтроллер, выполненный с возможностью получения данных о состоянии ячейки, передачи полученной информации в блок общего управления и балансировки напряжения ячеек большими токами (при получении управлявшей команды от блока общего управления). Балансировка эффективно работает в любом режиме работы батареи (при заряде, при разряде и в состоянии покоя). Множество ячеек аккумуляторной батареи по постоянному току соединены последовательно, а по переменному току - параллельно через систему трансформаторной балансировки. Каждая ячейка снабжена преобразователем постоянного тока в переменный ток. Преобразователи синхронизированы общим управляющим сигналом от блока общего управления. 2 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к погрузочно-разгрузочным работам, в частности к загрузке вагонов и конвейеров пылящими материалами, и может быть использовано в горной, химической и пищевой промышленности при хранении, транспортировке и погрузке/выгрузке пылящих материалов и направлено на уменьшение выноса пыли. Бункер-пылеподавитель содержит несущую раму в виде кронштейнов, консольно неподвижно закрепленную на кронштейнах над бункером крышу, входной отсекатель, размещенный поперек загружаемого в бункер материала для последующей транспортировки его по конвейеру или вагонами. Бункер снабжен оросителями, которые расположены на верхней и боковых его стенках и входной отсекатель выполнен в виде эластичных штор, максимально приближенных друг к другу, при этом длина каждой последующей шторы по мере удаления от входного портала равномерно увеличена по отношению к длине предыдущей, покрывая пересыпаемый материал при продвижении ковша или кузова погрузчика к порталу бункера. Изобретение обеспечивает предотвращение пыления сыпучих пород при погрузке/выгрузке вне зависимости от размеров ковша, вагона или кузова, а также достигается минимизация порчи оборудования от вредного воздействия пыли и жидкости за счет использования эластичных разноразмерных штор. 1 ил.

Изобретение относится к области турбомашиностроения, а именно к высокооборотным высоконапорным центробежным насосам, и может быть использовано в области ракетостроения, в турбонасосных агрегатах (ТНА) жидкостных ракетных двигателей (ЖРД). ТНА состоит из турбины и насоса, рабочие колеса которых установлены на одном валу, опирающемся на подшипники, уплотнений, отделяющих полость одного из подшипников от насоса и турбины. Полость подшипника соединена с полостью выхода из рабочего колеса с помощью профилированных каналов, вход в которые расположен под острым углом к окружной скорости рабочего тела. Изобретение направлено на обеспечение надежной работы ТНА в составе ЖРД за счет надежного разделения насоса и турбины на всех режимах работы при высокой экономичности ТНА. 6 з.п. ф-лы, 2 ил.

Изобретение относится к области турбомашиностроения, а именно к высокооборотным высоконапорным центробежным насосам, и может быть использовано в области ракетостроения, в турбонасосных агрегатах (ТНА) жидкостных ракетных двигателей (ЖРД). В турбонасосном агрегате окислителя жидкостного ракетного двигателя безгенераторной схемы, содержащем насос окислителя, турбину, работающую на газообразном горючем, подшипник турбины, систему уплотнений, отделяющих насос окислителя от турбины, между системой уплотнений и турбиной выполнен дренаж газа с уплотнением со стороны турбины, а подшипник турбины расположен в полости между этим уплотнением и полостью турбины. Изобретение обеспечивает снижение потерь разделительного газа, протекающего через тракт дренажа окислителя, и улучшает динамические характеристики ротора. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области насосостроения и может быть использовано в ракетостроении, в турбонасосных агрегатах (ТНА) жидкостных и ядерных ракетных двигателей. ТНА содержит насос 1, турбину 2, опирающийся на подшипники 4, 5 вал 3 с установленными на нем рабочим колесом 6 турбины 2 и крыльчаткой 7, корпус 8, разделительную полость 9 с уплотнениями 10, 11 вала 3, полость 12 за уплотнением 11, расположенным между разделительной полостью 9 и насосом 1, полость 13 за крыльчаткой 7. Уплотнения 10, 11 отделяют полость турбины 2 от полости насоса 1. Разделительная полость 9 соединена с полостью 13 высокого давления каналом 14. Полость 12 за уплотнением 11, расположенным между разделительной полостью 9 и насосом 1, объединена с полостью 13 за крыльчаткой 7. Изобретение направлено на повышение надежности запуска ЖРД за счет улучшения кавитационных качеств насоса, обусловленных снижением «горячих» утечек криогенной жидкости во входную часть крыльчатки в случае запуска без предварительного захолаживания конструкции. 2 н. и 4 з.п. ф-лы, 4 ил.

Группа изобретений относится к области насосостроения и может быть использована в ракетостроении, в турбонасосных агрегатах (ТНА) жидкостных ракетных двигателей (ЖРД) и ядерных ракетных двигателей (ЯРД). ТНА содержит насос 1, турбину 2, вал 3, опирающийся на шарикоподшипники 4, 5, установленные на валу 3 рабочее колесо 6 турбины 2 и крыльчатку 7, корпус 8 и разделительную полость 9 с уплотнениями 11 вала 3 со стороны полости насоса 1 и полости перед колесом 6 турбины 2. Разделительная полость 9 каналом 12 в корпусе и внешним отводящим трубопроводом 13 соединена с магистралью двигателя, давление в которой ниже давления в полости турбины 2. Внешний отводящий трубопровод 13 может быть соединен с газовым трактом после турбины 2, с магистралью подвода жидкости в насос 1, с магистралью подвода жидкости в двигатель. Разделительная полость 9 может быть соединена с газовым трактом после турбины 2 каналом или каналами в валу 3 и рабочем колесе 6 турбины 2. Группа изобретений направлена на повышение надежности ТНА ЖРД и коэффициента полезного действия турбонасосного агрегата. 2 н. и 3 з.п. ф-лы, 2 ил.

Изобретение относится к энергетике. Способ запуска водородной паротурбинной энергоустановки основан на продувке полостей и магистралей нейтральным газом, поэтапной подаче компонентов топлива и воды в энергоустановку, согласно первому варианту изобретения запуск осуществляют при сниженном расходе компонентов топлива, не более 80% от номинального, в процессе запуска регулируют расход пара через турбину, изменяя мощность на выходном валу, а при выходе на номинальный режим подают дополнительные компоненты топлива и воды. Кроме того, подача дополнительных компонентов топлива и воды, в отличие от первого варианта, может быть выполнена регулируемой. Также представлены устройства для реализации способов согласно первому и второму вариантам. Изобретение позволяет повысить долговечность за счет снижения термических напряжений в конструкции при запуске с малым временем выхода на режим. 4 н.п. ф-лы, 2 ил.

Изобретение относится к области энергетики, а именно к парогазовым энергоустановкам

Изобретение относится к технике измерения сигналов точного времени в каналах связи и может использоваться в сетях электросвязи, системах передачи

Изобретение относится к области машиностроения, а именно к области лопаточных машин, и может быть использовано в турбонасосных агрегатах жидкостных ракетных двигателей и ядерных ракетных двигателей

Изобретение относится к космическим аппаратам, в частности к микроспутникам для съемки поверхности Земли и передачи изображения

 


Наверх