Патенты автора Вострухин Александр Витальевич (RU)

Изобретение относится к области робототехники и аграрной техники, в частности к конструкции беспилотного летального аппарата (БПЛА), применяемого в сельском хозяйстве для отбора созревших в полевых условиях колосьев пшеницы с зернами лучших посевных качеств. БПЛА содержит закрепленные в корпусе вычислительный блок, систему передвижения, радиомодуль, навигационную систему, видеокамеру, модуль управления, устройство среза колосьев и их перемещения в емкость сбора колосьев, электронные весы. Емкость сбора колосьев установлена на электронных весах, информационный выход которых подключен к вычислительному блоку, модуль управления выполнен с возможностью управления устройством среза колосьев и их перемещения в емкость сбора колосьев, а также с возможностью подсчета количества колосьев. Реализуется функция отбора колосьев пшеницы с зернами лучших посевных качеств, определяется средний вес колосьев. 1 ил.

Изобретение относится к измерительной технике, в частности к аналого-цифровым преобразователям (АЦП), и может быть использовано в цифровых сенсорах и сенсорных системах для измерения температуры и напряжения аналоговых сигналов. Техническим результатом изобретения является расширение функциональных возможностей. Цифровой сенсор температуры на основе микроконтроллерного RC-АЦП содержит микроконтроллер 1, источник опорного напряжения (ИОН) 2, резистор 3, конденсатор 4, источник тока 5 и полупроводниковый диод 6. Резистор 3 и конденсатор 4 первыми выводами подключены к первому входу аналогового компаратора (АК), встроенного в микроконтроллер 1. Выход ИОН подключен к второму выводу резистора 3. Выход источника тока 5 и анод диода 6 подключены ко второму входу аналогового мультиплексора (АМ), встроенного в микроконтроллер 1. Первый вывод источника аналогового сигнала (ИАС) подключен к первому входу АМ. Второй вывод конденсатора 4, второй вывод ИАС и катод диода 6 подключены к общей шине питания. 1 ил.

Изобретение относится к области электротехники, цифровой электроники и радиотехники и может быть использовано для проведения учебных лабораторных работ и научных исследований в указанной области. Технический результат сводится к расширению функциональных возможностей, которые позволяют изучать и исследовать алгоритмы передачи данных, с использованием управляемых микроконтроллерами радиомодулей ISM-диапазонов. Стенд микроконтроллерный для изучения и исследования алгоритмов передачи данных от беспроводных датчиков содержит: компьютер, первое МКУ, второе МКУ, третье МКУ, первый ЦАП, второй ЦАП, программатор, блок индикации, четвертое МКУ, осциллограф, первый радиомодуль, второй радиомодуль, которые представляют собой, соответственно, радиопередатчик и радиоприемник ISM-диапазонов, работающие с использованием амплитудной модуляции типа ООК. Программатор снабжен разъемом, позволяющим подключать его к входам программирования любого из четырех МКУ. 2 з.п. ф-лы, 1 ил.

Изобретение относится к информационно-измерительной технике, в частности к беспроводным сенсорным системам. Техническим результатом является расширение функциональных возможностей микроконтроллерного RC-АЦП за счет обеспечения функции передачи результата преобразования по радиоканалу. Микроконтроллерный RC-АЦП с функцией передачи данных по радиоканалу содержит микроконтроллер 1, источник опорного напряжения (ИОН) 2, резистор 3, конденсатор 4, радиопередатчик 5. Резистор 3 и конденсатор 4 первыми выводами подключены к первому входу аналогового компаратора (АК), встроенного в микроконтроллер 1, выход ИОН подключен к второму выводу резистора 3, второй вывод конденсатора 4 подключен к общей шине питания, первый вывод источника аналогового сигнала (ИАС) подключен к второму входу АК, второй вывод ИАС подключен к общей шине питания, вход управления модуляцией радиопередатчика 5 подключен к выходу таймера/счетчика, встроенного в микроконтроллер 1. Плюсовой вывод питания радиопередатчика подключен к цифровому выводу микроконтроллера. Радиопередатчик микроконтроллерного RC-АЦП реализует двухуровневую амплитудную модуляцию типа OOK (On-Off Keying, Включено-Выключено). 1 ил.

Изобретение относится к области электротехники, электроники и радиотехники и может быть использовано для проведения учебных лабораторных работ и научных исследований в указанной области. Стенд микроконтроллерный для изучения и исследования алгоритмов работы ИСЭЭ содержит: компьютер 1, первое МКУ 2, второе МКУ 3, третье МКУ 4, первый ЦАП 5, второй ЦАП 6, программатор 7, блок индикации 8, четвертое МКУ 9, генератор сигналов 10 (двухканальный), первый радиомодуль 11, второй радиомодуль 12. Генератор сигналов 10 представляет собой генератор сигналов разнообразной формы и предназначен для специалистов, проводящих поверку контрольно-измерительной аппаратуры. Радиомодули 11 и 12 ISM диапазонов выпускаются многими компаниями. Компьютер 1 подключен через цифровые интерфейсы, например USB интерфейс, к первому МКУ 2, второму МКУ 3, третьему МКУ 4 и четвертому МКУ 9. К цифровым выходам первого МКУ 2 и второго МКУ 3 подключены, соответственно, первый ЦАП 5 и второй ЦАП 6, выходы которых подключены, соответственно, к первому и второму входам многоканального АЦП, встроенного в микроконтроллер третьего МКУ 4, цифровые выходы третьего МКУ 4 подключены к блоку индикации 8. Выход программатора снабжен разъемом, позволяющим подключать его к входам программирования любого из четырех МКУ, цифровой выход первого МКУ 2 подключен к цифровому входу четвертого МКУ 5 и предназначен для синхронизации работы этих МКУ. Первый МКУ 2 и второй МКУ 3, а также двухканальный генератор сигналов 10 предназначены для формирования сигналов, имитирующих сигналы датчиков напряжения и тока. Третий МКУ 4 предназначен для имитации микропроцессорного ядра ИСЭЭ. Первый 11 и второй 12 радиомодули, а также четвертый МКУ 5 предназначены для обмена информацией или в простейшем случае только для передачи результатов обработки информации от третьего МКУ 4 по радиоканалу ISM диапазона в четвертый МКУ 5, которое предназначено для имитации устройства сбора данных от ИСЭЭ. Техническим результатом при реализации заявленного решения является расширение функциональных возможностей, которые позволяют изучать и исследовать алгоритмы работы современных интеллектуальных счетчиков электрической энергии (ИСЭЭ) и обмен данными, с использованием управляемых микроконтроллерами радиомодулей ISM диапазонов. 2 з.п. ф-лы., 1 ил.

Изобретение относится к измерительной технике, в частности к аналого-цифровым преобразователям, и может быть использовано в цифровых системах для измерения аналоговых величин. Техническим результатом изобретения является повышение точности аналого-цифрового преобразования. Микроконтроллерный АЦП на основе переходного процесса в RC-цепи содержит микроконтроллер 1, источник опорного напряжения (ИОН) 2, первый резистор 3, конденсатор 4 и второй резистор 5. Резистор 3 и конденсатор 4 первыми выводами подключены к первому входу аналогового компаратора, встроенного в микроконтроллер 1. Выход ИОН подключен ко второму выводу резистора 3. Второй вывод конденсатора 4 подключен к первому выводу резистора 5 и к цифровому выводу микроконтроллера 1. Второй вывод резистора 5 подключен к общей шине питания. Второй вход аналогового компаратора микроконтроллера 1 подключен к второму выводу источника аналогового сигнала, первый вывод которого подключен к общей шине питания. 1 ил.

Изобретение относится к измерительной технике, в частности к устройствам для измерения физических величин емкостными датчиками и может быть использовано во встраиваемых вычислительных системах управления. Устройство измерения емкости для встраиваемых систем управления содержит (фиг.) микроконтроллер 1, компьютер 2, RC-фильтр 3, первый резистор 4, второй резистор 5, емкостный датчик 6, образцовый конденсатор 7. Емкостный датчик 6 и образцовый конденсатор 7 первыми обкладками подключены к общему проводу, вторая обкладка емкостного датчика 6 подключена к первому выводу первого резистора 4, вторая обкладка образцового конденсатора 7 подключена к первому выводу второго резистора 5, вторые выводы первого и второго резисторов подключены к соответствующим выходам двухканального ШИМ (на фиг. двухканальный ШИМ не показан), встроенного в микроконтроллер 1, вторые обкладки емкостного датчика 6 и образцового конденсатора 7 подключены, соответственно к первым входам первого и второго аналоговых компараторов (АК), встроенных в микроконтроллер 1, выход одноканального ШИМ, встроенного в микроконтроллер 1, (на фиг. одноканальный ШИМ не показан) подключен к входу RC-фильтра 3, выход которого подключен к вторым входам первого и второго АК, микроконтроллер 1 подключен через цифровой последовательный интерфейс к компьютеру 2. Технический результат при реализации заявленного решения является повышение точности и скорости измерения устройства, благодаря введению новых связей, что позволяет реализовать алгоритм параллельного преобразования для измерительной и опорной RC-цепей, а, следовательно, позволяет получить более высокую точность и скорость измерения. 1 ил.

Настоящее изобретение относится к области вычислительной техники. Технический результат заключается в расширении функциональных возможностей, заключающихся в осуществлении возможности записи программы в память микроконтроллера с помощью введенного программатора, а также в формировании программно-управляемого сигнала с заданными параметрами для алгоритмов встраиваемых систем управления и цифровой обработки сигналов. Технический результат достигается за счёт микроконтроллерного стенда для изучения, исследования и отладки алгоритмов встраиваемых систем управления и цифровой обработки сигналов, который содержит компьютер, первое и второе микроконтроллерные устройства, первый и второй цифро-аналоговые преобразователи, блок имитирующих устройств, управляемый источник питания, программатор, двухканальный USB-осциллограф, сдвиговый регистр, блок индикации. 1 з.п. ф-лы, 1 ил.

Изобретение относится к измерению физических величин емкостными датчиками и может быть использовано во встраиваемых вычислительных системах контроля и управления. Технический результат: расширение функциональных возможностей, повышение точности определения диэлектрических свойств контролируемых материалов, например количества содержащейся влаги в семенах сельскохозяйственных культур. Сущность: устройство измерения емкости для диэлькометрических влагомеров семян сельскохозяйственных культур содержит микроконтроллер 1, компьютер 2, RC-фильтр 3, первую резистивную матрицу 4, содержащую R1…Rn резисторы, вторую резистивную матрицу 5, содержащую R1…Rn резисторы, емкостный датчик 6, образцовый конденсатор 7. Емкостный датчик 6 и образцовый конденсатор 7 первыми обкладками подключены к общему проводу. Вторая обкладка емкостного датчика 6 подключена к общей точке соединения первых выводов резисторов первой резистивной матрицы 4, вторые выводы каждого резистора которой подключены к соответствующим выходам первых каналов двухканальных ШИМ, встроенных в микроконтроллер 1. Вторая обкладка образцового конденсатора 7 подключена к общей точке соединения первых выводов резисторов второй резистивной матрицы 5, вторые выводы каждого резистора которой подключены к соответствующим выходам вторых каналов двухканальных ШИМ, встроенных в микроконтроллер 1. Вторые обкладки емкостного датчика 6 и образцового конденсатора 7 подключены соответственно к первому и второму входам аналогового мультиплексора, встроенного в микроконтроллер 1. Выход аналогового мультиплексора подключен к инвертирующему входу аналогового компаратора, встроенного в микроконтроллер 1. Микроконтроллер 1 подключен через цифровой последовательный интерфейс к компьютеру 2. Выход одноканального ШИМ, встроенного в микроконтроллер 1, подключен к входу RC-фильтра 3, выход которого подключен к неинвертирующему входу аналогового компаратора. 1 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике, в частности к аналого-цифровым преобразователям и может быть использовано в цифровых системах для измерения аналоговых величин. Технический результат - повышение точности. АЦП с использованием переходного процесса в RC-цепи содержит (фиг.) микроконтроллер 1, источник опорного напряжения (ИОН) 2, резистор 3, конденсатор 4. Резистор 3 и конденсатор 4 первыми выводами подключены к первому входу аналогового компаратора (АК), встроенного в микроконтроллер 1, (на фиг. АК не показан), выход ИОН подключен к второму выводу резистора 3, второй вывод конденсатора 4 подключен к общей шине питания, второй вывод АК микроконтроллера 1 подключен к первому выходу источника аналогового сигнала, второй выход которого подключен к общей шине питания. 1 ил.

Изобретение относится к измерительной технике, в частности к устройствам для измерения физических величин емкостными датчиками, и может быть использовано во встраиваемых вычислительных системах контроля и управления. Микроконтроллерное измерительное устройство емкости для систем контроля и управления содержит резисторы 1, 2, 3, 4, емкостный датчик 5, микроконтроллер 6, RC-фильтр 7 и компьютер 8. Первая обкладка емкостного датчика 5 подключена к общему проводу, вторая обкладка емкостного датчика 5 подключена к первым выводам резисторов 1, 2 и к первому входу аналогового компаратора (не показан), встроенного в микроконтроллер 6, вторые выводы резисторов 1 и 2 подключены к выходам, соответственно первого и второго широтно-импульсных модуляторов (ШИМ), встроенных в микроконтроллер 6 (ШИМ не показаны), выход третьего ШИМ (не показан), встроенного в микроконтроллер, подключен к входу RC-фильтра 7, выход которого подключен к второму входу аналогового компаратора, встроенного в микроконтроллер 6. Первые выводы резисторов 3 и 4 подключены к входу аналого-цифрового преобразователя (АЦП), встроенного в микроконтроллер 6 (АЦП не показан), второй вывод резистора 3 подключен к цифровому выходу микроконтроллера 6, второй вывод резистора 4 подключен к общему проводу. Компьютер 8 подключен через цифровой последовательный интерфейс к микроконтроллеру 6. В качестве компьютера может быть использован микрокомпьютер типа Raspberry Pi. Техническим результатом при реализации заявленного решения является повышение точности преобразования и расширение функциональных возможностей устройства, благодаря возможности использования более совершенного алгоритма преобразования емкости в двоичный код, а также увеличению вычислительных и инфокоммуникационных возможностей устройства за счет введения компьютера. 1 ил.

Изобретение относится к измерительной технике, в частности к устройствам для измерения физических величин емкостными датчиками, и может быть использовано во встраиваемых вычислительных системах контроля и управления. Микроконтроллерное измерительное устройство емкости для встраиваемых вычислительных систем контроля и управления содержит (чертеж) резистор 1, емкостный датчик 2, резистор 3, образцовый конденсатор 4, микроконтроллер 5, компьютер 6 и RC-фильтр 7. Емкостный датчик 2 и образцовый конденсатор 4 первыми обкладками подключены к общему проводу, вторые обкладки емкостного датчика 2 и образцового конденсатора 4 подключены, соответственно, к первым выводам резисторов 1 и 3, вторые выводы резисторов 1 и 3 подключены к выходам соответственно первого и второго широтно-импульсных модуляторов (ШИМ), встроенных в микроконтроллер 5 (на чертеже ШИМ не показаны), вторые обкладки емкостного датчика 2 и образцового конденсатора 4 подключены соответственно к первому и второму входам аналогового мультиплексора, встроенного в микроконтроллер 5 (на чертеже аналоговый мультиплексор не показан), выход аналогового мультиплексора подключен к входу аналогового компаратора, встроенного в микроконтроллер 5 (на чертеже аналоговый компаратор не показан), компьютер 6 подключен через цифровой последовательный интерфейс к микроконтроллеру 5, выход третьего ШИМ, встроенного в микроконтроллер (на чертеже третий ШИМ не показан), подключен к входу RC-фильтра, выход которого подключен к неинвертирующему входу аналогового компаратора. В качестве компьютера может быть использован микрокомпьютер типа Raspberry Pi. Техническим результатом при реализации заявленного решения выступает повышение точности преобразования и расширение функциональных возможностей устройства, благодаря возможности использования более совершенного алгоритма преобразования емкости в двоичный код, а также увеличению вычислительных и инфокоммуникационных возможностей устройства, путем введения компьютера. 1 ил.

Изобретение относится к измерительной технике, в частности к устройствам для измерения физических величин емкостными датчиками, и может быть использовано во встраиваемых вычислительных системах контроля и управления. Технический результат заключается в повышении точности преобразования и расширении функциональных возможностей устройства благодаря возможности использования более совершенного алгоритма преобразования емкости в двоичный код, а также увеличению вычислительных и инфокоммуникационных возможностей устройства путем введения компьютера. Микроконтроллерное измерительное устройство емкости для встраиваемых вычислительных систем содержит резистор 1, емкостный датчик 2, резистор 3, образцовый конденсатор 4, микроконтроллер 5 и компьютер 6. Емкостный датчик 1 и образцовый конденсатор 4 первыми обкладками подключены к общему проводу, вторые обкладки емкостного датчика 1 и образцового конденсатора 4 подключены соответственно к первым выводам резисторов 1 и 3, вторые выводы резисторов 1 и 3 подключены к выходам соответственно первого и второго широтно-импульсных модуляторов (ШИМ), встроенных в микроконтроллер 5 (на чертеже ШИМ не показаны), вторые обкладки емкостного датчика 2 и образцового конденсатора 4 подключены, соответственно к первому и второму входам аналогового мультиплексора, встроенного в микроконтроллер 5 (на чертеже аналоговый мультиплексор не показан), выход аналогового мультиплексора подключен к входу аналого-цифрового преобразователя (АЦП), встроенного в микроконтроллер 5 (на чертеже АЦП не показан), компьютер 6 подключен через цифровой последовательный интерфейс к микроконтроллеру 5. 1 ил.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения неэлектрических величин резистивными датчиками. Микроконтроллерный измерительный преобразователь сопротивления резистивных датчиков в двоичный код с функцией самодиагностики содержит первый резистор 1 (он же резистивный датчик), второй резистор 2, третий резистор 3, четвертый резистор 4, первый RC-фильтр 5, второй RC-фильтр 6, микроконтроллер 7 и пятый резистор 8. Резисторы 2, 3, 4 и 8 - образцовые, и в общем случае их сопротивления должны быть равны. Резисторы 1, 2, 3, 4 и 8 первыми выводами подключены к выходам соответственно первого, второго, третьего, четвертого и пятого ШИМов микроконтроллера 7 (ШИМы не показаны). Резисторы 1, 2 и 8 вторыми выводами подключены к входу первого RC-фильтра 5, выход которого подключен к первому входу аналогового компаратора (АК) микроконтроллера 7 (АК не показан), резисторы 3 и 4 вторыми выводами подключены к входу второго RC-фильтра 6, выход которого подключен к второму входу АК микроконтроллера 7. Технический результат, который может быть достигнут с помощью предлагаемого изобретения, сводится к повышению точности. 1 з.п. ф-лы, 1 ил.

Изобретение относится к электроизмерительной технике, в частности к устройствам для контроля качества изоляции, и может быть использовано в средствах для диагностики состояния изоляции асинхронного электродвигателя с короткозамкнутым ротором. Технический результат: расширение функциональных возможностей. Сущность: устройство содержит микроконтроллер 1, включающий широтно-импульсный модулятор, аналоговый компаратор и аналого-цифровой преобразователь, делитель 2 напряжения, управляемый источник 3 опорного напряжения, управляемый ключ 4, преобразователь 5 интерфейсов USART/USB, источник 6 постоянного напряжения, диагностируемую обмотку 7 электродвигателя, ключ 8, образцовую индуктивность 9, полупроводниковый диод 10, конденсатор 11, компьютер 12, резистивный сумматор 13 токов, клавиатуру 14 и датчик 15 тока. 2 з п. ф-лы, 1 ил.
Изобретение относится к измерительной технике, в частности к устройствам для измерения электрической емкости, и может быть использовано в средствах для измерения и контроля неэлектрических величин емкостными датчиками. Технический результат заключается в повышении точности измерений. Микроконтроллерное устройство для измерения емкости содержит генератор 1, микроконтроллер 2, RC-фильтр 3, первый 4 и второй 5 цифровые датчики температуры, преобразователь 6 интерфейсов USART/USB и компьютер 7. Во времязадающую цепь генератора 1 включена измеряемая емкость Сх. Соединение элементов показано на блок-схеме (см. чертеж). 1 ил.

Изобретение относится к области электроники, радиотехники и к системам мобильной связи. Технический результат – расширение функциональных возможностей в части исследования алгоритмов беспроводных информационных систем. Стенд микроконтроллерный для изучения и исследования алгоритмов цифровой модуляции содержит компьютер, микроконтроллерное устройство, блок индикации, блок имитирующих устройств, при этом компьютер подключен к микроконтроллерному устройству, к цифровым и аналоговым входам которого подключен блок имитирующих устройств; стенд дополнительно содержит второе и третье микроконтроллерные устройства, первый и второй цифроаналоговые преобразователи, первый, второй и третий усилители, первую, вторую и третью антенны, программатор; при этом третья антенна подключена к входу третьего усилителя, выход которого подключен к входу аналого-цифрового преобразователя, встроенного в микроконтроллер третьего микроконтроллерного устройства, цифровые выходы которого подключены к блоку индикации, вход программатора подключен к USB порту, а выход программатора выполнен с обеспечением возможности выбора подключения к любому из микроконтроллерных устройств. 1 з.п. ф-лы, 1 ил.
Изобретение относится к электроизмерительной технике, в частности к устройствам для контроля качества изоляции, характеризуемого ее пробивным напряжением, и может быть использовано в средствах для диагностики состояния изоляции асинхронного электродвигателя с короткозамкнутым ротором. Технический результат заключается в расширении функциональных возможностей и оптимизации процесса измерения. Микропроцессорное устройство диагностики межвитковой изоляции электродвигателя по ЭДС самоиндукции с функцией мегомметра содержит микроконтроллер 1, включающий широтно-импульсный модулятор (ШИМ) (не показан) и аналоговый компаратор (не показан), делитель 2 напряжения, управляемый источник 3 опорного напряжения, управляемый ключ 4, преобразователь 5 интерфейсов USART/USB, источник 6 постоянного напряжения, диагностируемую обмотку 7 электродвигателя, ключ 8, образцовую индуктивность 9, полупроводниковый диод 10, конденсатор 11, компьютер 12, резистивный сумматор 13 токов и клавиатуру 14. Резистивный сумматор 13 токов выполнен в виде набора резисторов, первые выводы которых являются входами, а вторые выводы соединены в общую точку, которая представляет собой выход, управляемый ключ 4 выполнен на биполярном транзисторе n-p-n структуры. 2 з.п. ф-лы, 1 ил.

Изобретение относится к медицинской технике, а именно для измерения частоты пульса пациента. Микроконтроллерный датчик пульса с передачей информации по радиоканалу содержит микроконтроллер, светодиод, фотоприемник, RC-фильтр, первый, второй, третий и четвертый резисторы, причем первый вывод первого резистора подключен к аноду светодиода, первый вывод второго резистора подключен к первому выводу фотоприемника, катод светодиода и второй вывод фотоприемника подключены к минусу источника питания микроконтроллера, второй вывод второго резистора подключен к плюсу источника питания микроконтроллера, выход RC-фильтра подключен к первому входу аналогового компаратора микроконтроллера, ко второму выводу первого резистора подключен выход первого широтно-импульсного модулятора микроконтроллера, первый вывод фотоприемника подключен к входу RC-фильтра, первые выводы третьего и четвертого резисторов подключены ко второму входу аналогового компаратора микроконтроллера, второй вывод третьего резистора подключен к плюсу источника питания микроконтроллера, второй вывод четвертого резистора подключен к минусу источника питания микроконтроллера, при этом датчик пульса дополнительно содержит конденсатор, подключенный к светодиоду параллельно, второй широтно-импульсный модулятор микроконтроллера, подключенный выходом к входу радиопередатчика с двухуровневой амплитудной манипуляцией. Использование изобретения позволяет повысить точность измерений частоты пульса. 1 ил.

Изобретение относится к электроизмерительной технике, в частности, к устройствам для контроля качества изоляции, характеризуемого ее пробивным напряжением, и может быть использовано в средствах для диагностики состояния изоляции асинхронного электродвигателя с короткозамкнутым ротором. Микропроцессорное устройство диагностики изоляции электродвигателя по ЭДС самоиндукции с функцией мегомметра содержит микроконтроллер 1, включающий широтно-импульсный модулятор (ШИМ) и аналоговый компаратор делитель напряжения 2, управляемый источник опорного напряжения 3, первый управляемый ключ 4, преобразователь интерфейсов USART/USB 5, источник постоянного напряжения 6, диагностируемую обмотку электродвигателя 7, второй ключ 8, образцовую индуктивность 9, полупроводниковый диод 10, конденсатор 11 и компьютер 12. Второй вывод источника постоянного напряжения 6 подключен к первым выводам диагностируемой обмотки электродвигателя 7 и образцовой индуктивности 9, вторые выводы последних соединяются со вторым выводом второго ключа 8, который может находиться либо в «нижнем» положении - подключается диагностируемая обмотка 7, либо в «верхнем» - включаются образцовая индуктивность 9 и анод полупроводникового диода 10, катод которого соединен с первой обкладкой конденсатора 11. Первый вывод второго ключа 8 подключен ко вторым выводам первого управляемого ключа 4 и делителя напряжения 2. Вывод управления первого управляемого ключа 4 подключен к микроконтроллеру 1, вход управления источника опорного напряжения 3 подключен в выходу ШИМ микроконтроллера 1, выход источника опорного напряжения 3 подключен к первому входу аналогового компаратора микроконтроллера 1, ко второму входу аналогового компаратора микроконтроллера 1 подключен средний вывод делителя напряжения 2, первый крайний вывод которого соединен с первыми выводами первого управляемого ключа 4 и источника постоянного напряжения 6, а также со второй обкладкой конденсатора 11. Контролируемое сопротивление изоляции подключается к обкладкам конденсатора 11. Модуль USART микроконтроллера 1 подключен к преобразователю интерфейсов USART/USB 5, который подключен к интерфейсу USB компьютера 12. Технический результат, достигаемый при реализации заявленного изобретения, сводится к расширению его функциональных возможностей за счет организации измерения под управлением компьютера. 1 ил.

Изобретение относится измерительным информационным системам, в частности к системам для измерения емкости и сопротивления и может быть использовано для измерения неэлектрических величин резистивными и емкостными датчиками в беспроводных системах контроля и управления. Микроконтроллерный измерительный преобразователь для резистивных и емкостных датчиков с передачей результата преобразования по радиоканалу содержит микроконтроллер 1, образцовый резистор 2 (Ro), емкостный датчик 3 (Cx), резистивный датчик 4 (Rx), образцовый конденсатор 5 (Co), первый резистор 6 и второй резистор 7 резистивного делителя напряжения, радиопередатчик 8 с двухуровневой амплитудной манипуляцией. Первые выводы образцового резистора 2, резистивного датчика 4, емкостного датчика 3 и образцового конденсатора 5 подключены к первому входу аналогового компаратора (на фиг. аналоговый компаратор не показан) микроконтроллера 1, первые выводы резисторов 6 и 7 подключены к второму входу аналогового компаратора микроконтроллера 1. Вторые выводы образцового резистора 2, емкостного датчика 3, резистивного датчика 4, образцового конденсатора 5, резистора 6 и резистора 7 подключены, соответственно, к первому, второму, третьему, четвертому, пятому и шестому дискретным выходам микроконтроллера 1. Выход широтно-импульсного модулятора микроконтроллера 1 подключен к модулирующему входу радиопередатчика 8. Седьмой дискретный выход микроконтроллера 1 подключен к выводу питания радиопередатчика 8, общий вывод радиопередатчика 8 подключен к общему выводу микроконтроллера 1. Технический результат заключается в расширении функциональных возможностей. 1 ил.

Изобретение относится к электроизмерительной техник, в частности к устройствам для контроля качества изоляции, характеризуемого ее пробивным напряжением, и может быть использовано в средствах для диагностики состояния изоляции асинхронного электродвигателя с короткозамкнутым ротором. Микроконтроллерное устройство диагностики межвитковой изоляции обмотки электродвигателя с функцией мегомметра содержит микроконтроллер 1 (МК 1), делитель напряжения 2, управляемый источник опорного напряжения 3, первый ключ 4, индикатор 5, источник постоянного напряжения 6, диагностируемую обмотку электродвигателя 7, второй ключ 8, образцовую индуктивность 9, полупроводниковый диод 10 и конденсатор 11. Второй вывод источника постоянного напряжения 6 подключен к первым выводам диагностируемой обмотки электродвигателя 7 и образцовой индуктивности 9, вторые выводы которых соединяются со вторым выводом второго ключа 8, который может находиться либо в «нижнем» положении - подключается диагностируемая обмотка 7, либо в «верхнем» - включаются образцовая индуктивность 9 и анод полупроводникового диода 10, катод которого соединен с первой обкладкой конденсатора 11. Первый вывод второго ключа 8 подключен ко вторым выводам первого ключа 4 и делителя напряжения 2. Вывод управления первого ключа 4 подключен к МК 1, вход управления источника опорного напряжения 3 подключен в выходу широтно-импульсного модулятора МК 1, выход источника опорного напряжения 3 подключен к первому входу аналогового компаратора МК 1, ко второму входу аналогового компаратора МК 1 подключен средний вывод делителя напряжения 2, первый крайний вывод которого соединен с первыми выводами первого ключа 4 и источника постоянного напряжения 6, а также со второй обкладкой конденсатора 11. Индикатор 5 подключен к выходу соответствующего порта МК 1. Измеряемое сопротивление изоляции подключается к обкладкам конденсатора 11. Технический результат заключается в расширении функциональных возможностей устройства диагностики межвитковой изоляции обмотки электродвигателя за счет организации измерения сопротивления изоляции, т.е. реализации функций мегомметра. 1 ил.

Изобретение относится к области медицины и может быть использовано для диагностики частоты пульса пациента. Микроконтроллерный измерительный преобразователь для фотоплетизмографического датчика пульса содержит микроконтроллер, светодиод, фотоприемник, RC-фильтр, первый и второй резисторы. Первый вывод первого резистора подключен к аноду светодиода. Первый вывод второго резистора подключен к первому выводу фотоприемника. Катод светодиода и второй вывод фотоприемника подключены к минусу источника питания микроконтроллера. Второй вывод второго резистора подключен к плюсу источника питания микроконтроллера. Выход RC-фильтра подключен к первому входу аналогового компаратора микроконтроллера. Микроконтроллерный измерительный преобразователь также содержит третий и четвертый резисторы. Ко второму выводу первого резистора подключен выход широтно-импульсного модулятора микроконтроллера. Первый вывод фотоприемника подключен к входу RC-фильтра. Первые выводы третьего и четвертого резисторов подключены ко второму входу аналогового компаратора микроконтроллера. Второй вывод третьего резистора подключен к плюсу источника питания микроконтроллера. Второй вывод четвертого резистора подключен к минусу источника питания микроконтроллера. Достигается повышение точности измерения. 1 ил.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, емкости и напряжения. Микроконтроллерный измерительный преобразователь сопротивления, емкости и напряжения в двоичный код содержит четыре резистора, два генератора, управляемые напряжением и снабженные входами разрешения генерирования, и микроконтроллер; первые выводы резисторов подключены соответственно к первому, второму, третьему и четвертому выходам микроконтроллера, вторые выводы первого и второго резисторов подключены к входу управления напряжением первого генератора, вторые выводы третьего и четвертого резисторов подключены к входу управления напряжением второго генератора, выходы генераторов подключены к счетным входам встроенных в микроконтроллер первого и второго двоичных счетчиков. Техническим результатом является повышение точности преобразования сопротивления, емкости и напряжения в двоичный код. 1 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения неэлектрических величин резистивными датчиками. Микроконтроллерный измерительный преобразователь с управляемым питанием резистивных измерительных цепей методом широтно-импульсной модуляции содержит микроконтроллер, первый RC-фильтр, первый, второй, третий и четвертый резисторы, причем первый вывод первого резистора подключен к выходу первого широтно-импульсного модулятора микроконтроллера, вторые выводы первого и второго резисторов подключены ко входу первого RC-фильтра, выход которого подключен к первому входу аналогового компаратора микроконтроллера, причем в преобразователь введен второй RC-фильтр, первые выводы второго, третьего и четвертого резисторов подключены к выходам соответственно второго, третьего и четвертого широтно-импульсных модуляторов микроконтроллера, вторые выводы третьего и четвертого резисторов подключены ко входу второго RC-фильтра, выход которого подключен ко второму входу аналогового компаратора микроконтроллера. Техническим результатом является повышение точности преобразования. 1 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения неэлектрических величин резистивными датчиками. Микроконтроллерный измерительный преобразователь с функцией измерения тока в цепи резистивного датчика содержит: (см. чертеж) резистор 1 (R1), резистор 2 (R2), резистор 3 (R3) резистор 4 (R4), т.е. резистивный датчик, резистор 5 (R5) и микроконтроллер 6. Резисторы 1 и 2 первыми выводами подключены к первому входу аналогового мультиплексора микроконтроллера 6, резисторы 3 и 4 первыми выводами подключены ко второму входу аналогового мультиплексора микроконтроллера 6, второй вывод резистора 4 и первый вывод резистора 5 подключены к третьему входу аналогового мультиплексора микроконтроллера 6, вторые выводы резисторов 1 и 3 подключены к первому цифровому выходу микроконтроллера 6, вторые выводы резисторов 2 и 5 подключены ко второму цифровому выходу микроконтроллера 6. Выход аналогового мультиплексора микроконтроллера 6 подключен ко входу аналого-цифрового преобразователя (АЦП), встроенного в микроконтроллер 6. Технический результат заключается в повышении точности. 1 ил.

Изобретение относится к измерительной технике, в частности к устройствам для измерения емкости и активного сопротивления, и может быть использовано в средствах для измерения и контроля неэлектрических величин емкостными и резистивными датчиками и передачи результата измерения по радиоканалу. Микроконтроллерное устройство для измерения емкости и сопротивления и передачи результата измерения по радиоканалу содержит микроконтроллер (МК) 1, образцовый резистор 2 (Ro), емкостный датчик 3 (Сх), например, влажности воздуха, резистор 4 (измеряемое сопротивление Rx), например термосопротивление, конденсатор образцовой емкости 5 (Со), резистивный делитель, состоящий из резисторов 6 и 7, выход 8 передачи двоичного кода. Резисторы 2 и 4 первыми выводами подключены к не инвертирующему входу аналогового компаратора МК 1 и первым обкладкам емкостного датчика 3 и конденсатора 5 образцовой емкости, первые выводы резисторов 6 и 7 делителя напряжения подключены к инвертирующему входу аналогового компаратора МК 1, вторые выводы резисторов 2 и 4 подключены, соответственно, к первому и второму выходам МК 1, вторые обкладки емкостного датчика 3 и конденсатора 5 образцовой емкости подключены, соответственно, к третьему и четвертому выходам МК 1, вторые выводы резисторов 6 и 7 делителя напряжения подключены соответственно к пятому и шестому выходам МК 1, выход передачи результата измерения МК 1 подключен к входу приема двоичного кода радиомодуля 8, дискретный выход радиомодуля 8 подключен к входу управления энергосберегающим режимом МК. Технический результат заключается в расширении функциональных возможностей. 1 ил.

Изобретение относится к электроизмерительной технике, в частности к устройствам для контроля качества изоляции, характеризуемого ее пробивным напряжением, и может быть использовано в средствах для диагностики состояния межвитковой изоляции обмотки асинхронного или синхронного двигателя. Микроконтроллерное устройство диагностики межвитковой изоляции обмотки электродвигателя содержит (фиг.) МК 1, делитель напряжения 2, управляемый источник опорного напряжения 3, первый управляемый ключ 4, индикатор 5, источник постоянного напряжения 6, диагностируемую обмотку электродвигателя 7, второй ключ 8 и образцовую индуктивность 9. Первый вывод источника постоянного напряжения 6 подключен к первым выводам индуктивностей 7 (диагностируемая обмотка электродвигателя) и 9 (образцовая индуктивность), вторые выводы которых подключаются ко второму выводу второго ключа, который может находиться либо в «верхнем» (подключается индуктивность 7), либо в «нижнем» (подключается образцовая индуктивность 9) положении. Первый вывод второго ключа подключен ко вторым выводам первого управляемого ключа и делителя напряжения. Вывод управления первого ключа подключен к МК 1, вход управления источника опорного напряжения 3 подключен в выходу широтно-импульсного модулятора (на фиг. не показан) МК 1, выход источника опорного напряжения 3 подключен к первому входу аналогового компаратора (на фиг. не показан) МК 1, ко второму входу аналогового компаратора МК 1 подключен средний вывод делителя напряжения 2, первый крайний вывод делителя напряжения 2 подключен к первым выводам первого управляемого ключа 4 и источника постоянного напряжения 6, индикатор 5 подключен к выходу соответствующего порта МК 1. Технический результат заключается в повышении точности устройства за счет организации сравнения ЭДС самоиндукции образцовой и диагностируемой обмоток. 1 ил.

Изобретение относится к системам связи, использующим инфразвуковые, звуковые или ультразвуковые акустические волны, и может быть использовано в средствах для передачи информации через ограждающие конструкции жилых и производственных зданий. Микроконтроллерный ультразвуковой генератор для систем передачи информации содержит микроконтроллер и излучатель ультразвуковых колебаний. Первый выход встроенного в микроконтроллер генератора прямоугольных импульсов подключен к первому входу излучателя ультразвуковых колебаний. Второй выход встроенного в микроконтроллер генератора прямоугольных импульсов подключен ко второму входу излучателя ультразвуковых колебаний. При этом встроенный в микроконтроллер генератор прямоугольных импульсов выполнен управляемым от широтно-импульсного модулятора, встроенного в микроконтроллер. При этом выходные сигналы генератора прямоугольных импульсов находятся в противофазе. Технический результат - упрощение схемы и снижение энергопотребления. 1 ил.

Изобретение относится к области аналого-цифровых преобразователей. Техническим результатом является повышение точности и скорости преобразования. Микроконтроллерный АЦП с использованием переходного процесса в RC-цепи содержит первый резистор 1, второй резистор 2, третий резистор 3, четвертый резистор 4, конденсатор 5 и микроконтроллер 6. Сопротивления резисторов 2 и 3 равны. Резистор 1 и конденсатор 5 первыми выводами подключены к первому входу аналогового компаратора (АК) микроконтроллера 6, первые выводы резистора 2 и резистора 3 подключены ко второму входу АК микроконтроллера 6, вторые выводы резисторов 1, 2, 3 и конденсатора 5 подключены соответственно к первому, второму, третьему и четвертому дискретным выходам микроконтроллера 6, первый вывод резистора 4 подключен к источнику входного напряжения, второй вывод резистора 4 подключен ко второму выводу резистора 3. 1 ил.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения и контроля неэлектрических величин резистивными датчиками. Микроконтроллерный измерительный преобразователь с уравновешиванием резистивного моста Уитстона методом широтно-импульсной модуляции содержит первый резистор 1, второй резистор 2 (он же резистивный датчик), третий резистор 3, четвертый резистор 4, пятый резистор 5, шестой резистор 6, RC-фильтр 7 и микроконтроллер 8. Резисторы 1 и 2 первыми выводами подключены к входу RC-фильтра 7, выход которого подключен к первому входу АК микроконтроллера 8, первый вывод резистора 5 подключен ко второму выводу резистора 2 и к первому выводу резистора 6, второй вывод резистора 5 подключен к выходу ШИМ микроконтроллера 8, первые выводы резисторов 3 и 4 подключены ко второму входу АК микроконтроллера 8, вторые выводы резисторов 1, 3, 4 и 6 подключены соответственно к первому, второму, третьему и четвертому дискретным выходам микроконтроллера 8. Технический результат заключается в повышении точности микроконтроллерного измерительного преобразователя. 1 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения и контроля неэлектрических величин резистивными датчиками. Микроконтроллерный измерительный преобразователь с уравновешиванием резистивного моста содержит первый резистор 1, второй резистор 2 (он же резистивный датчик), третий резистор 3, четвертый резистор 4, пятый резистор, RC-фильтр 6 и микроконтроллер 7. Резисторы 1, 2 и 5 первыми выводами подключены к входу RC-фильтра 6, выход которого подключен к первому входу АК (АК не показан) микроконтроллера 7, второй вывод резистора 5 подключен к выходу ШИМ (ШИМ не показан) микроконтроллера 7, первые выводы резисторов 3 и 4 подключены ко второму входу АК микроконтроллера 7, вторые выводы резисторов 1, 2, 3, и 4 подключены, соответственно к первому, второму, третьему и четвертому дискретным выходам микроконтроллера 7. Технический результат заключается в повышении точности микроконтроллерного измерительного преобразователя. 1 з.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано для измерения физических величин, контролируемых резистивными датчиками. Микроконтроллерный измерительный преобразователь сопротивления в двоичный код с генератором, управляемым напряжением, содержит первый резистор 1 (R1), второй резистор 2 (R2), третий резистор 3 (R3), четвертый резистор 4 (R4), управляемый напряжением и снабженный входом разрешения генерирования генератор 5 и МК 6. Первые выводы резисторов 1, 2, 3 и 4 подключены соответственно к первому, второму, третьему и четвертому выходам МК 6, вторые выводы резисторов 1, 2, 3 и 4 подключены к входу управления напряжением генератора 5, выход которого подключен к счетному входу встроенного в МК 6 двоичного счетчика, пятый выход МК 6 подключен к входу разрешения генерирования генератора 5. Технический результат заключается в повышении чувствительности. 1 ил.

Изобретение относится к электроизмерительной технике, в частности к устройствам для контроля качества изоляции, характеризуемого ее пробивным напряжением, и может быть использовано в средствах для диагностики состояния межвитковой изоляции обмотки асинхронного двигателя или трансформатора. Техническим результатом является управление током разрыва в цепи диагностируемой обмотки электродвигателя. Технический результат достигается благодаря тому, что микроконтроллерное устройство диагностики межвитковой изоляции обмотки электродвигателя по ЭДС самоиндукции содержит микроконтроллер 1, делитель напряжения 2, первый RC-фильтр 3, управляемый ключ 4, индикатор 5, второй RC-фильтр 6, источник тока 7 управляемый и диагностируемую обмотку 8 электродвигателя. При этом выход второго ШИМ микроконтроллера подключен к входу второго RC-фильтра 6, выход которого подключен к входу управления источника тока 7, первая клемма которого подключена ко второму выводу ключа 4, а вторая клемма подключена ко второму выводу диагностируемой обмотки 8. 1 ил.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения и контроля неэлектрических величин резистивными датчиками

Изобретение относится к измерительной технике, в частности к устройствам для измерения скорости потока газа или жидкости резистивными подогреваемыми датчиками

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения неэлектрических величин резистивными датчиками

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения неэлектрических величин резистивными датчиками

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения и контроля неэлектрических величин резистивными датчиками

Изобретение относится к электроизмерительной технике, в частности к контролю качества изоляции, и может быть использовано в средствах для диагностики состояния межвитковой изоляции обмотки асинхронного двигателя или трансформатора

Изобретение относится к измерительной технике, в частности к устройствам для измерения емкости и активного сопротивления, и может быть использовано в средствах для измерения и контроля неэлектрических величин емкостными и резистивными датчиками

Изобретение относится к измерительной технике, в частности к устройствам для измерения емкости и активного сопротивления

Изобретение относится к измерительной технике, в частности к устройствам для измерения емкости и активного сопротивления

Изобретение относится к области автомобильной электроники, а именно к области электростартерного пуска двигателей внутреннего сгорания (ДВС)

Изобретение относится к измерительной технике, в частности к устройствам для измерения частоты вращения вала емкостным датчиком, и может быть использовано в автоматизированных системах управления технологическими процессами для измерения неэлектрических величин

Изобретение относится к области автомобильной электроники, а именно к области электростартерного пуска двигателей внутреннего сгорания (ДВС)

 


Наверх